Year 12 Chemistry Assessment Task 1 - 2011 Student Number: _____

Processing data and Skills Task

December 2010

General Instructions

Working time – **45 minutes**

Write your answers using a pen in the spaces provided. If you need additional space to answer a question, use the blank space at the end of the same page OR at the end of the paper and clearly indicate that this has been done.

Task value: 36 marks.

Weighting of this task: 15% of your school-based Chemistry assessment.

Part 1 – assessing the usefulness of a natural indicator. First-hand investigation. GROUP WORK.

You are to carry out the first-hand investigation in the group to which you have been assigned. After you have carried out the FHI, collect the rest of the assessment task from the supervising teacher.

The remainder of the task is to be carried out individually.

No further communication with other students is permitted.

Recommended time allocation for the first-hand investigation practical:

5 minutes

Aim:

To assess the usefulness of a homemade natural indicator, prepared using flowers from a red pansy.

Equipment:

A beaker that is holding –

* Three test tubes containing unknown solution A

and * Three test tubes containing unknown solution B

and * Three test tubes containing unknown solution C

Dropper bottle of phenolphthalein indicator solution

Dropper bottle of methyl orange indicator solution

Dropper bottle of natural indicator, prepared using flowers from a red pansy

Test tube rack

Be careful you do not contaminate or waste any solutions – they will not be replaced.

Use one bottle at a time and replace the lid when finished.

Ensure that the correct lid/dropper is replaced onto the correct bottle.

DO NOT put any droppers or lids onto the bench.

Marks may be deducted for incorrect laboratory techniques.

	12 Chemistry Assessment Task 1 - 2		
<u>Proce</u>	ssing data and Skills Task December 20	10	
Meth	od:		
1.	Place the three test tubes containing solu	tion A into the test tube rack.	
2.	Add 5 drops of the natural indicator solu	tion to the first test tube of solution A and thoroughly	
	mix.		

- 3. Record the observed colour into the results table.
- 4. Using phenolphthalein indicator solution and the second test tube of solution A, repeat steps 2 and 3.
- 5. Using methyl orange indicator solution and the third test tube of solution A, repeat steps 2 and 3.
- 6. Repeat steps 1 to 5, replacing solution A with solution B.
- 7. Repeat steps 1 to 5, replacing solution A with solution C.
- 8. Return the 9 used test tubes, in their beaker, to the trolley at the front of the room.

Results:

Solution (unknown)	Colour observed with Indicator solution		
Solution (unknown)	Natural indicator	Phenolphthalein	Methyl orange
A			
В			
С			

9M

Ensure that you have packed up the equipment before you collect the rest of the task.

You must not communicate to another student from now on – the rest of the task is to be completed individually.

ENSURE THAT YOUR STUDENT NUMBER IS WRITTEN ON EVERY PAGE.

ce.					
n	ssing data and Skills Tasl ral Instructions	k December 2010			
		n in the spaces provided	d. If you need additional spac	e to answer a guestion, us	se
			e end of the paper and clearly		
e.		· ·			
	mmandad tima allacat	tion for processing (lata from the FHI and se	acandary saureas	
	40 minutes	tion for processing t	iata irom the Fifi and se	condary sources.	
	40 minuics				
r	t 1 –A natural in	dicator			
	t-hand investigatio		VIDUAL WORK		
		11 411419 515 11 (2) 1	VIDOILE WORK		
	Recount the procedure	you used in class to	prepare a natural indicator	r.	2
••••					••••
•••	•••••				••••
				•••••	
•••					
•••					
••••					
					••••
					••••
••••	Indicator	Colour at lower	Range over which the	Colour at higher	
	Indicator	Colour at lower	Range over which the	Colour at higher	
••••		Colour at lower pH's Yellow	pH changes colour	Colour at higher pH's Blue	
	Indicator Bromothymol blue Phenolphthalein	pH's	pH changes colour 6.0 – 7.7	pH's Blue	
	Bromothymol blue	pH's Yellow	pH changes colour 6.0 - 7.7 8.2 - 10.0	pH's	
	Bromothymol blue Phenolphthalein	pH's Yellow Colourless	pH changes colour 6.0 – 7.7	pH's Blue Magenta (pink)	

This question continues overleaf.

	r 12 Chemistry Assessment Task 1 - 2011 Student Number:	
3.	Assess the usefulness of the homemade natural pansy indicator as an acid-base indicator.	4M
		•••
		•••

Prod	ar 12 Chemistry Assessment Task 1 - 2011 Student Number: cessing data and Skills Task December 2010 art 2 – Processing second-hand data.	_
1.	One industrial source of the oxides of sulfur is from the combustion of fuels such as coal which contains small quantities of sulfur minerals, such as $FeS_{2(s)}$. These sulfide minerals in coal are oxidised during combustion, and sulfur dioxide is released.	
a.	Write a balanced equation for the reaction of $FeS_{2(s)}$ with oxygen during the combustion of coal. One of the products is $iron(II)$ oxide.	1M
b.	NSW coal is highly sought after because it lower in sulfide minerals $(0.3 - 1.0\%)$ than coal from other areas. Coal from one area of the Hunter Valley has been analysed and found to be 0.75% FeS _{2(s)} , by mass. Determine the mass of FeS _{2(s)} that is contained in 1.75 tonne of this coal.	1 2M
c.	Calculate the volume of sulfur dioxide that will be produced when 1.75 tonne of the Hunter Valley coal is combusted. Assume room temperature and pressure (ie. 25°C and 100 kPa). Show full working.	, 3M

1.	Cessing data and Skills Task December 2010 Outline TWO other sources of sulfur dioxide - one indicates.	ustrial and one natural.	2N
•••••			
2.	"Technological advances have allowed us to monitor the environment, allowing us to conclude that their concentrations of the concentration of the concentrat		etals in the
	environment, anowing as to concrete that their concen-	diations have increased.	
	Describe TWO pieces of evidence that corroborate (sug	pport) this statement.	4N
•••••			•••••
•••••			
•••••			
•••••			•••••
			•••••

Processing data and Skills Task December 2010 3. Assess the impacts of oxides of nitrogen on the environment, making use of appropriate		
	chemical equations.	6
••••		
•••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		

Marking Guidelines Task 1 2011 Year 12 CHEMISTRY

Part 1 – determining the pH of solutions. Results

Marking criteria	Marks
1 mark for each correct observation of	1 - 9
COLOUR.	

NOTE -

- → Each set of test tubes was checked while students were completing the written section of the task. For all groups, the colour observed when methyl orange was added to solution A was the same as the colour observed when methyl orange was added to solution B.
- → Your skills of observation and ability to follow the method were being evaluated here –
- * ½ mark was deducted for each observation relating to the clarity of the mixture ("clear"; "opaque") IF the appropriate colour was also recorded (a max of 2 marks was deducted for this; deductions were rounded up to the nearest whole mark).
- * 1 mark was deducted for each observation about the clarity of the mixture that had NO colour recorded.

NOTE ALSO – some students also attracted a penalty of "-1" mark because they failed to follow some of the instructions.

1

l.	
Marking criteria	Marks
(1) identifies an appropriate material, including	2
its colour, that can be used to make a natural	
indicator (eg. "rose petals" is not good	
enough since white rose petals would not	
make an acid/base indicator; whereas dark	
red rose petals make a useful indicator).	
(2) describes the procedure used in class to	
make a natural indicator, clearly outlining the	
correct sequence of processes (grinding;	
decanting/filtering) and identifying the critical	
pieces of equipment used (mortar & pestle)	
and other chemicals used (sand & ethanol).	
Either point 1 OR point 2 as above.	1

NOTE – before marking questions 2 AND 3, the answers from all students were divided into TWO groups.

- \rightarrow Group A students who interpreted the colour observed when methyl orange was added to solutions A & B as orange (in-between red and yellow) thus indicating a pH range of 3.1 4.4.
- → Group B students who interpreted the colour observed when methyl orange was added to solutions A & B as an intense shade of yellow thus indicating a pH range of > 4.4.

2. a.

Marks
3
2
1

NOTE -

Your answer to question 3 was marked based on the answer you gave to question 2.

3.	
Marking criteria	Marks
(1) Clearly and correctly links ALL THREE of the	3 - 4
colours observed (when the natural indicator	
was added to solutions A, B & C) to the level	
of acidity/basicity of each solution. The	
answer can be either quantitative (eg. pink	
indicates pH < 3.1) OR qualitative (eg. pink	
indicates a strongly acidic substance).	
The answer MUST be consistent with the	
analysis given in question 2.	
(2) Makes a judgement about the usefulness of	
red pansy solution as acid/base indicator that	
is consistent with points 1 and 3.	
(3) Provides ONE (3 marks) or TWO (4 marks)	
statements supporting the judgement that	
detail the usefulness of the red pansy	
solution as an acid/ base indicator (relating	
colours, & the pH range they indicate, to their	
ability to identify/distinguish between	
solutions with different pH's.)	
[see below for examples of typical statements.]	
(1) Clearly and correctly links the colour	2
observed for TWO (or 3) of the 3 solutions	
(when the natural indicator was added to	
solutions A, B & C) to the acidity/basicity of	
each solution.	
The answer can be either quantitative (eg.	
pink indicates pH < 3.1) OR qualitative (eg.	
pink indicates an acidic substance).	
The answer MUST be consistent with the	
analysis given in question 2.	
OR (2) Covers points (2) AND (2) as outlined for 2.4	
(2) Covers points (2) AND (3) as outlined for 3-4	
marks BUT does not directly link each of the	
3 colours (observed when the red pansy indicator was added to each of the solutions)	
to a specific level of acidity/basicity.	
to a specific level of actuity/basicity.	

Identifies that the red pansy natural indicator	1
gave different colours in each of the 3 solutions	

Group A

- * can be used to distinguish strong acids from weak acids (pink vs colourless)
- *can be used to distinguish strong to moderately weak acids from neutral/basic (pink/colourless vs another colour)
- * cannot be used to distinguish neutral solutions from basic solutions (not enough info for this)
- * cannot be used to distinguish weak bases from strong bases (not enough info for this)

Group B

- * can be used to distinguish strong acids from strong bases (pink vs yellow)
- * can be used to identify a solution as weakly acidic, neutral or weakly basic (colourless)
- * cannot be used to distinguish neutral solutions from weakly basic solutions (both colourless)
- * cannot be used to distinguish neutral solutions from weakly acidic solutions (both colourless)

Part 2 – Processing second hand data.

1. a.

Marking criteria	Marks
$2FeS_{2(s)} + 5O_{2(g)} \rightarrow 2FeO_{(s)} + 4SO_{2(g)}$	1

1. b.

Marking criteria	Marks
Calculates the mass of FeS _{2(s)} as 13.125 kg or	2
13125 g or 0.00131 T showing working with the	
same units used consistently in calculations	
Calculates the mass of FeS _{2(s)} showing working	1
but units used are NOT consistent throughout	

1.c.

Marking criteria	Marks
(1) Using symbol formulae (n = $m/M \& V = n.V_M$)	3
(2) Calculates the moles of FeS ₂ (109.38 mol)	
(3) Uses the mole ratio to calculate the moles of	
SO ₂ (218.77 mol)	
(4) calculates the volume of SO ₂ (5420 L)	
Calculates, correctly, only two steps of (2), (3) &	2
(4) above	
Calculates, correctly, only one of (2), (3) & (4)	1
above	

1. d.

Marking criteria	Marks
Identifies TWO sources of sulfur dioxide (other	2
than combustion of a fuel)and provides one	
qualifying statement	
Identifies ONE other source of sulfur dioxide	1

2

Marking criteria	Marks
Describes TWO pieces of evidence that indicate	4
non-metal oxide concentrations in the	
environment have increased	
Describes ONE piece of evidence that indicate	3
non-metal oxide concentrations in the	
environment have increased AND describes	
ONE piece of evidence without showing how it	
supports the statement	

Describes ONE piece of evidence that indicate non-metal oxide concentrations in the environment have increased	2
Describes ONE piece of evidence without	1
showing how it supports the statement	

3.

3.	
Marking criteria	Marks
Includes	6
 Clear, relevant and specific assessment of 	
the impacts of NO_x on the environment.	
 Specifically describes TWO impacts of 	
MORE than one oxide of nitrogen on the	
environment.	
* Includes TWO relevant and correct equations	
Includes	5
 Clear, relevant and specific assessment of 	
the impacts of NOx on the environment.	
 Outlines TWO impacts of TWO oxides of 	
nitrogen on the environment.	
 Includes TWO relevant and correct 	
equations.	
Includes	4
 Assessment of the impacts of NOx of the 	
environment.	
Outlines TWO impacts of oxides of nitrogen	
on the environment.	
 Includes TWO relevant and correct 	
equations.	
Includes	3-2
Makes value judgements for individual	
impacts	
 Includes TWO or ONE impact on the 	
environment.	
 Includes TWO or ONE correct equations 	
Includes one relevant statement	1