

Student Number	
Mark / 24	

Chemistry

HSC Course Production of Materials Theory Test • 2002

General Instructions

- Reading time 5 minutes
- Working time 40 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Student Number at the top of this page

Assessment Weighting $-4^{\%}$

Total Marks - 24

Part A – 4 marks

- Attempt Questions 1 4
- Allow about 5 minutes for this part

Part B – 20 marks

- Attempt Questions 5 10
- Allow about 35 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		A ()	в 🌑	с 🔾	D 🔿

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

Answer Box for Questions 1 – 4

1	ΑΟ	BO	СО	DО
2	ΑΟ	BO	со	DO
3	ΑΟ	BO	со	DO
4	ΑΟ	BO	со	DО

- **1** Which of the following lists contains only condensation polymers?
 - (A) cellulose, protein, starch
 - (B) cellulose, polyvinyl chloride, polyethylene
 - (C) polystyrene, starch, protein
 - (D) polyvinyl chloride, polyethylene, polystyrene
- 2 Which of the following defines the term *cracking* used in the petrochemical industry?
 - (A) addition of hydrogen to a compound
 - (B) preparation of a polymer from a hydrocarbon monomer
 - (C) formation of saturated hydrocarbons from alkanes
 - (D) conversion of long chain hydrocarbons to shorter chain molecules
- **3** A mixture of ethanol and ethylene is heated with concentrated sulfuric acid in a closed container and a reaction occurs. What is the likely outcome?
 - (A) more ethylene forms
 - (B) more ethanol forms
 - (C) CO_2 and H_2O form
 - (D) butane forms
- 4 In which of the following equations is the species printed in **bold** type being reduced?

Show all relevant working in questions involving calculations.

Question 5 (4 marks)

Three groups of students set out to determine the heat of combustion of the three alkanols... methanol, CH_3OH ; ethanol, C_2H_5OH ; and 1–propanol, C_3H_7OH .

Each group measured out 100 mL of water into a container and heated the water by burning a measured mass of alcohol. Their results are shown below...

Alcohol burned	Mass of H ₂ O heated (g)	Temperature rise(°C)	Mass of alcohol burned (g)	Heat of Combustion (kJ mol ^{−1})
methanol	100	10	0.185	725
ethanol	100	10	0.142	
1-propanol	100	10	0.125	2016

- (a) Given that 4.18 J are required to raise the temperature of 1.00 g of water by 1.00 °C, use the above data to determine the following values...
 - (i) Heat of combustion of ethanol in kJ g $^{-1}$ (1 mark)

(ii) Heat of combustion of ethanol in kJ mol $^{-1}$ (1 mark)

Question 5 continues on page 4

Question 5 (continued)

(b) Plot the heat of combustion (kJ mol⁻¹) against molar mass for all three alkanols. Clearly label the axes. (1 mark)

(c) Use the graph to predict the heat of combustion of 1–butanol, C_4H_9OH in kJ mol⁻¹

Question 6 (3 marks)

(a) Give a balanced equation for the conversion of ethylene to ethanol. (1 mark)

Question 6 continues on page 5

(b) Account for ethanol's extensive use as a solvent for polar and non-polar substances. Use a diagram to explain your answer. (2 marks)

Question 7 (3 marks)

An electrochemical cell was constructed using two half-cells. One half-cell consisted of tin metal and a tin(II) chloride solution and the other half-cell consisted of zinc metal and zinc chloride solution.

- Draw a diagram of the galvanic cell.
- Label the anode and the cathode.
- Indicate the direction of electron flow.

Question 8 (5 marks)

(a) Explain the term *biopolymer* and identify an example. (2 marks)

(b) Cellulose is a polymer of β -glucose. A β -glucose molecule is shown below....

Draw a segment of a cellulose molecule by joining three glucose molecules together. (3 marks)

Question 9 (2 marks)

A student was asked to perform a first-hand investigation to compare the reactivities of hexane and hexene by observing their reactions with bromine water.

(a) Describe the reaction(s) observed by the student when the procedures were carried out in a darkened laboratory. (**1 mark**)

(b) Write an equation to show any addition reaction(s) that occurred. (1 mark)

Question 10 (3 marks)

Alkenes and their derivatives are important substances in the production of polymers. Polyvinyl chloride (PVC) is one such polymer.

(a) Draw the structure of polyvinyl chloride showing three linked monomer units. (1 mark)

(b) Describe **one** use of polyvinyl chloride and a property which makes it useful for this purpose. (2 marks)

DATA SHEET

Avogadro's constant, N _A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	101.3 kPa (1.00 atm) and	
_	at 273 K (0°C)	22.41 L
	at 298 K (25°C)	24.47 L
Ionisation constant for water at	298 K (25°C), K _w	$ 1.0 \times 10^{-14}$
Specific heat capacity of water		$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

 $\Delta H = -m\,C\,\Delta T$

Some standard potentials

 $pH = -log_{10} [H^+]$

$K^{+} + e^{-}$	~^	K (<i>s</i>)	-2.94 V
$Ba^{2+} + 2e^{-}$	~`	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	~`	Ca(s)	–2.87 V
$Na^{+} + e^{-}$	$\stackrel{\longrightarrow}{\leftarrow}$	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	~`	Mg(s)	–2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	←	$\frac{1}{2}$ H ₂ (g) + OH ⁻	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	~^	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	0.13 V
$H^{+} + e^{-}$	\rightleftharpoons	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	$\frac{1}{\tau}$	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	\rightleftharpoons	20H ⁻	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	~	I_	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	~`	I_	0.62 V
$Fe^{3+} + e^{-}$	$\stackrel{\frown}{\leftarrow}$	Fe ²⁺	0.77 V
$Ag^+ + e^-$	~``	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	~``	Br ⁻	1.08 V
$\frac{1}{2}$ Br ₂ (aq) + e ⁻	~``	Br ⁻	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	~``	H ₂ O	1.23 V
$\frac{1}{2}\mathrm{Cl}_2(g) + \mathrm{e}^-$	\rightleftharpoons	Cl⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	$\stackrel{\frown}{\leftarrow}$	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}$ Cl ₂ (<i>aq</i>) + e ⁻	~`	Cl⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	~`	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	~~`	F -	2.89 V

Aylward and Findlay, SI Chemical Data (4th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

	Г							_			Т												٦
		Francium	[223.0]	87 Fr	Caesium	132.9	S S S	Rubidium	85.47	37 Rb	Potassium	39.10	K 19	Sodium	22.99	Na II	Lithium	6.941	L:3	Hydrogen	1.008	Η	
		Radium	[226.0]	88 Ra	Barium	137.3	56 Ba	Strontium	87.62	Sr Sr	Calcium	40.08	Ca Ca	Magnesium	24.31	Mg	Beryllium	9.012	4 Be				
57 La 138.9 Lanthanum	Lanthanid	Actinides		89-103	Lanthanides		57-71	Yttrium	88.91	Y 39	Scandium	44.96	21 Sc				<u> </u>						
58 Ce 140.1 ^{Cerium}	es	Rutherfordium	[261.1]	104 Rf	Hafnium	178.5	72 Hf	Zirconium	91.22	Z740	Titanium	47.87	1:22 Ti										
59 Pr 140,9 Praseodymium		Dubnium	[262.1]	105 Dh	Tantalum	180.9	73 Ta	Niobium	92.91	N9 1	Vanadium	50.94	V ²³										
60 Nd 144.2 Neodymium		Seaborgium	[263.1]	106 Sg	Tungsten	183.8	74 W	Molybdenum	95.94	42 Mo	Chromium	52.00	Ω24										
61 Pm [146.9] Promethium		Bohrium	[264.1]	107 Rh	Rhenium	186.2	Re Re	Technetium	[98.91]	H3 Tc	Manganese	54.94	Mn					A	At				PERIO
62 Sm 150.4 Samarium		Hassium	[265.1]	108 Hs	Osmium	190.2	0s 0s	Ruthenium	101.1	Ru Ru	Iron	55.85	26 Fe					tomic Weight	omic Number				DIC TA
63 Eu 152.0 Europium		Meitnerium	[268]	109 Mt	Iridium	192.2	77 Ir	Rhodium	102.9	Rh	Cobalt	58.93	C ₀				Gold	197.0	79 Au		KEV		BLE O
64 Gd 157.3 Gadolinium		Ununnilium	1	110 Uun	Platinum	195.1	78 Pt	Palladium	106.4	Pd Pd	Nickel	58.69	N:28				Name of elem		Symbol of eler				OF THE
65 Tb 158.9 Terbium		Unununium		111 Uuu	Gold	197.0	79 Au	Silver	107.9	47 Ag	Copper	63.55	29 Cu				ant		nent				ELEMI
66 Dy 162.5 Dysprosium		Ununbium		112 Uub	Mercury	200.6	Hg Hg	Cadmium	112.4	G&	Zinc	65.39	Zn Zn							_			ENTS
67 Ho 164.9 ^{Holmium}				113	Thallium	204.4	11 81	Indium	114.8	49 In	Gallium	69.72	31 Ga	Aluminium	26.98	Al	Boron	10.81	Βv				
68 Er 167.3 Erbium	3	Ununquadium		114 Uuq	Lead	207.2	Pb 82	Tm	118.7	Sn Sn	Germanium	72.61	32 Ge	Silicon	28.09	Si 14	Carbon	12.01	Uo				
69 Tm 168.9 ^{Thulium}				115	Bismuth	209.0	B: 83	Antimony	121.8	51 Sb	Arsenic	74.92	33 As	Phosphorus	30.97	15 P	Nitrogen	14.01	Z				
70 Yb 173.0 Ytterbium		Ununhexium		116 Uuh	Polonium	[210.0]	Po 84	Tellurium	127.6	52 Te	Selenium	78.96	Se Se	Sulfur	32.07	16 S	Oxygen	16.00	0∞				
71 Lu 175.0 Lutetium	2			117	Astatine	[210.0]	A: 85	Iodine	126.9	1 53	Bromine	79.90	Br 35	Chlorine	35.45	017	Fluorine	19.00	ъo				_
- 		Ununoctium		118 Uuo	Radon	[222.0]	Rn 86	Xenon	131.3	Xe Xe	Krypton	83.80	Kr 36	Argon	39.95	Ar Ar	Neon	20.18	Ne 10	Helium	4.003	He	S
	L	_												-			_	_		_	-		

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes ²³⁷Np and ⁹⁹Tc.

89 Ac [227.0] Actinium

90 Th 232.0 ^{Thorium}

91 Pa 231.0 Protactinium

92 U 238.0 ^{Uranium}

93 Np [237.0] Neptunium

94 Pu [239.1] Plutonium

95 Am [241.1] Americium

96 Cm [244.1] ^{Curium}

97 Bk [249.1] Berkelium

98 Cf [252.1] Californium

99 Es [252.1] Einsteinium

100 Fm [257.1] Fermium

101 Md [258.1] Mendelevium

102 No [259.1] Nobelium

103 Lr [262.1] Lawrencium

Marking Scheme and Outcomes

Chemistry

HSC Course Production of Materials Theory Test • 2002 Assessment Weighting – $4^{\%}$

Total Marks – 24

Working Time – 40 minutes

								OU	TCON	IES						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1									•						
	2									٠						
	3								•	•						
Z	4							•						•		
Ĕ	5							•			•			•		
JES	6									•						
g	7								•	٠						
	8									٠						
	9								•	•				•		
	10							•	•					•		

- 1 Which of the following lists contains only condensation polymers?
 - (A) cellulose, protein, starch
 - (B) cellulose, polyvinyl chloride, polyethylene
 - (C) polystyrene, starch, protein
 - (D) polyvinyl chloride, polyethylene, polystyrene
- 2 Which of the following defines the term *cracking* used in the petrochemical industry?
 - (A) addition of hydrogen to a compound
 - (B) preparation of a polymer from a hydrocarbon monomer
 - (C) formation of saturated hydrocarbons from alkanes
 - (D) conversion of long chain hydrocarbons to shorter chain molecules
- **3** A mixture of ethanol and ethylene is heated with concentrated sulfuric acid in a closed container and a reaction occurs. What is the likely outcome?
 - (A) more ethylene forms
 - (B) more ethanol forms
 - (C) CO_2 and H_2O form
 - (D) butane forms
- 4 In which of the following equations is the species printed in **bold** type being reduced?

Question 5 (4 marks)

Three groups of students set out to determine the heat of combustion of the three alkanols... methanol, CH_3OH ; ethanol, C_2H_5OH ; and 1–propanol, C_3H_7OH .

Each group measured out 100 mL of water into a container and heated the water by burning a measured mass of alcohol. Their results are shown below...

Alcohol burned	Mass of H ₂ O heated (g)	Temperature rise (°C)	Mass of alcohol burned (g)	Heat of Combustion (kJ mol ⁻¹)
methanol	100	10	0.185	725
ethanol	100	10	0.142	
1-propanol	100	10	0.125	2016

- (a) Given that 4.18 J are required to raise the temperature of 1.00 g of water by 1.00 °C, use the above data to determine the following values...
 - (i) Heat of combustion of ethanol in kJ g⁻¹ (1 mark)

Heat of combustion $(kJ/g) = -m C \Delta T / mass ethanol kJ/g = -(100g x 4.18 J/g/°C x 10°C) / 0.142 =$ **<u>29.4 kJ/g</u>**

(ii) Heat of combustion of ethanol in kJ mol⁻¹ (1 mark)

Heat of combustion = $-m C \Delta T / n$ n = # moles of ethanol = (0.142g / 46.068 g/mol) = 3.08 x 10⁻³ mol kJ/mol = $-(100g x 4.18 J/g/^{\circ}C x 10^{\circ}C) / 3.08 x 10^{-3} mol = 1360 kJ/mol$

Heat of combustion is defined as the heat evolved, :: in this linguistic context a negative sign is not required, but will be accepted.

Question 5 continues on page 4

Question 5 (continued)

(b) Plot the heat of combustion (kJ mol⁻¹) against molar mass for all three alkanols. Clearly label the axes. (1 mark)

(c) Use the graph to predict the heat of combustion of 1–butanol, C_4H_9OH in kJ mol⁻¹ Extrapolated value is about **2600 kJ/mol**

Criteria	Marks
Correct calculation of heat of combustion for the units specified	2
Graph drawn with the proper values on y - axis	1
Correct extrapolated value	1

Question 6 (5 marks)

(a) Give a balanced equation for the conversion of ethylene to ethanol including reaction conditions. (1 mark)

 $C_2H_4 \ + \ H_2O \quad \rightarrow \quad C_2H_5OH$

Criterion	Mark
Correct equation including heating with catalyst of conc. H_2SO_4 or H_3PO_4	1

Question 6 continues on page 5

(b) Account for ethanol's extensive use as a solvent for polar and non-polar substances. Use a diagram to explain your answer. (2 marks)

Criterion	Marks
The answer should include a depiction of the molecular structure of ethanol and as a cause of the resulting charge polarization within the molecule to explain its ability to dissolve various types of substances.	2

Ethanol has both polar (the – OH) and non-polar,(the C_2H_5 –) parts. The polarity of the hydroxy group is due to the much greater electronegativity of oxygen compared with carbon and hydrogen. The non-polar ethyl group enables ethanol to dissolve non-polar substances such as hexane. Hence, ethanol is able to dissolve both polar and non-polar substances. The partial charges on the polar part of the molecule are...

Question 7

An electrochemical cell was constructed using two half-cells. One half-cell consisted of tin metal and a tin(II) chloride solution and the other half-cell consisted of zinc metal and zinc chloride solution.

- Draw a diagram of the galvanic cell.
- Label the anode and the cathode.
- Indicate the direction of electron flow.

Criterion	Marks
Correctly drawn diagram with labels	2
Correct direction of electron flow	1

Question 8

(a) Explain the term *biopolymer* (1 mark) and identify an example (1 mark).

"Biopolymers are polymers that are made totally or in large part by living things." (Smith) "Naturally occurring polymer generated using renewable resources like microorganisms or plants." (OTEN) "A natural polymer." (Thickett) "These are naturally occurring polymers such as cellulose, starch, and gluten..." (Syllabus Notes)

Examples... <u>cellulose, starch, protein, rubber, carboxymethyl cellulose (CMC), PLA, PHA or</u> <u>PHB (poly ß-hydroxyalkanoate), etc.</u>

Question 8 continues on page 6

Question 8 (continued)

(b) Cellulose is a polymer of β -glucose. A β -glucose molecule is shown below....

Draw a segment of a cellulose molecule by joining three glucose molecules together. (3 marks)

One mark for showing one – O – linkage up and one down.

One mark for showing the three – CH₂OH groups alternately up, down, up.

Question 9 (2 marks)

A student was asked to perform a first-hand investigation to compare the reactivities of hexane and hexene by observing their reactions with bromine water.

(a) Describe the reaction(s) observed by the student when the procedures were carried out in a darkened laboratory. (**1 mark**)

The hexene immediately decolourised the bromine water.

(b) Write an equation to show any addition reaction(s) that occurred. (1 mark)

 $CH_3CH_2CH_2CH_2CH = CH_2 + Br_{2 (aq)} \rightarrow CH_3CH_2CH_2CH_2CHBrCH_2Br$

Production of bromohydroxyhexane is also acceptable.

Question 10 (3 marks)

Alkenes and their derivatives are important substances in the production of polymers. Polyvinyl chloride (PVC) is one such polymer.

(a) Draw the structure of polyvinyl chloride showing three linked monomer units. (1 mark)

(b) Describe **one** use of polyvinyl chloride and a property which makes it useful for this purpose. (2 marks)

- e.g. PVC can be used to make electrical <u>conduit</u> because it is an electrical <u>insulator</u>. The presence of CI atoms in the polymer make it flame resistant.
- e.g. PVC is used for credit cards because it is a tough, rigid polymer.

Must relate property to usage for **two marks**. Usage without related property gains **one mark**. Property without specific use gains **one mark**.