

# Girraween High School 

## Year 12 HSC Task 2 Examination

## Mathematics

February 2016

## Time Allowed: 90 Minutes

## Instructions:

- There are 12 questions in this paper. All questions are compulsory.
- Start each question $(6-12)$ on a new sheet of paper.
- Write on one side of the paper only.
- Show all necessary working.
- Board-approved calculators may be used.
- Marks may be deducted for careless or badly arranged work.


## Section I

5 marks

## Attempt Questions 1-5

Question 1 (1 mark)
For which values of $x$ is $f(x)=\frac{x^{4}}{12}-\frac{x^{2}}{2}$ concave up?
A. $x>1$
B. $x<-1$
C. $-1<x<1$
D. $x<-1$ and $x>1$

Question 2 (1 mark)
A function $f(x)$ is increasing at an increasing rate at $x=a$, which of the following is true?
A. $f^{\prime}(a)<0$ and $f^{\prime \prime}(a)<0$
B. $f^{\prime}(a)<0$ and $f^{\prime \prime}(a)>0$
C. $f^{\prime}(a)>0$ and $f^{\prime \prime}(a)<0$
D. $f^{\prime}(a)>0$ and $f^{\prime \prime}(a)>0$

Question 3 (1 mark)
Which of the following is the correct value of $\int_{0}^{1}(3 x+1)^{3} d x$ ?
A. $\frac{64}{3}$
B. $\frac{85}{4}$
C. $\frac{255}{4}$
D. 64

Question 4 (1 mark)
Suppose $b>a$, which of the following is always greater than $\int_{a}^{b} f(x) d x$ ?
A. $\int_{a}^{b} k f(x) d x$ where $k$ is a constant such that $k>0$
B. $\int_{a}^{b} f(x)+k d x$ where $k$ is a constant such that $k>0$
C. $\int_{a}^{b} f^{2}(x) d x$
D. $\left|\int_{a}^{b} f(x) d x\right|$

Question 5 (1 mark)


A graph of $f(x)$ is given above. Which of the following best represents the graph of $f^{\prime}(x)$ ?




## Section II

71 marks

## Attempt Questions 6-12

Write your answers on the paper provided.
In Questions 6-12, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (8 marks)
(a) The curve $y=\sqrt{2 a x^{2}+x}$ has a stationary point at $x=\frac{1}{2}$. Find the values of $a$.
(b) If $y=x^{2} \sqrt{x}$, show that $\frac{3 y^{\prime}}{y^{\prime \prime}}=2 x$
(c) Find the values of $x$ such that $y=x(x+1)^{3}$ is increasing.

Question 7 (12 marks)
(a) Show that the curve $y=\frac{x}{2 x+1}$ does not have any points of inflexion.
(b) Consider the function $f(x)=4 x^{3}-x^{4}$.
i. Find the coordinates of the stationary points of the curve $f(x)$, and determine their nature.
ii. Find any points of inflexion.
iii. Sketch the graph of $f(x)$, clearly indicating all important features including intercepts.

Question 8 (8 marks)
(a) Determine the global minimum value of the function $f(x)=x^{4}-4 x^{2}+3$ in the domain $-1 \leq x \leq 2$
(b) Suppose point $P(x, y)$ is a point on the parabola $2 x=y^{2}$.

i. Show that the distance $D$ between $P(x, y)$ and $(1,0)$ is given by $D=\sqrt{x^{2}+1}$
ii. Using calculus, find the coordinates of $P(x, y)$ such that $D$ is minimum.

## Question 9 (10 marks)

(a) Find the primitive of the following:
i. $f(x)=2 \sqrt{x}-\frac{2}{\sqrt[3]{x}}+1$
ii. $f(x)=\frac{1}{\sqrt{2 x+1}}$
(b) The gradient function of a curve is given by $y^{\prime}=3(x+1)^{2}$. Find the equation of the curve if it passes through the point $(1,10)$.
(c) The second derivative of a curve is given by $\frac{d^{2} y}{d x^{2}}=1+\frac{1}{x^{3}}$. Find the equation of the curve given that it passes through the points $(1,0)$ and $(-1,5)$.

## Question 10 (12 marks)

(a) Find:

$$
\begin{align*}
& \text { i. } \int x^{3}+4 x^{2}-1 d x  \tag{1}\\
& \text { ii. } \int 6(1-2 x)^{5} d x  \tag{2}\\
& \text { iii. } \int \sqrt{x}\left(x+\frac{1}{x}\right) d x \tag{2}
\end{align*}
$$

(b) Evaluate:
i. $\int_{-2}^{2} x^{5}-x^{3}+x d x$
ii. $\int_{0}^{10} \frac{3}{10\left(\frac{x}{5}-1\right)^{4}} d x$
(c) Find the positive value of $k$ such that $\int_{1}^{k} k+x d x=0$

Question 11 (10 marks)
(a) Find the area bounded by the curve $y=x^{2}-4 x+3$ and the $x$-axis between $x=2$ and $x=4$.
(b) Find the area bounded by the curve $y=\sqrt{x-1}$ and the $y$-axis between $y=0$ and $y=1$
(c) The graph below represents $y=f^{\prime}(x)$. Specific $x$-values $a, b, c, d$ and $e$ are as indicated in the diagram.

i. For what value(s) of $x$ will the graph of $y=f(x)$ have a stationary point?
ii. For what value(s) of $x$ is the graph of $y=f(x)$ increasing?
iii. For what value(s) of $x$ is the graph of $f(x)$ concave up?

Question 12 (11 marks)
(a) If $y=a x^{3}+b x^{2}+c x+d$ has only one stationary point show that $b^{2}=3 a c$.
(b) A cone is inscribed in a sphere of radius $a$, centred at $O$. The height of the cone is $x$ and the radius of the base is $r$, as shown in the diagram below.

i. Show that $r^{2}=2 a x-x^{2}$.
ii. Show that the volume, $V$, of the cone is given by $V=\frac{1}{3} \pi\left(2 a x^{2}-x^{3}\right)$.
iii. Find the value of $x$ for which the volume of the cone is a maximum.
(c) Find the value of $\int_{-1}^{2}|x|+x^{2} d x$

End of exam

Y/r12 HSC TASM 2 (2n) 2016
Nabtiple Chore Solutions:
$D D B B A$
Q6
(a)

$$
\begin{aligned}
& 7 y=\sqrt{2 a x^{2}+x} \\
& y=\left(2 a x^{2}+x\right)^{1 / 2} \\
& y^{\prime}=\frac{1}{2}\left(2 a x^{2}+x\right)^{-1 / 2} \times(4 a x+1) \\
& y^{\prime}=\frac{4 a x+1}{2 \sqrt{2 a x^{2}+x}}
\end{aligned}
$$

$y^{\prime}=0$ when $x=\frac{1}{2}$
$\therefore 4 a x+1=0$ wher $x=\frac{1}{2}$

$$
\therefore \quad 2 a+1=0 \quad \therefore \quad a=-\frac{1}{2} .
$$

(b)

$$
\begin{aligned}
& y=x^{2} \sqrt{x} \\
& y=x^{5 / 2} \\
& y^{\prime}=\frac{5}{2} x^{\frac{3}{2}}=\frac{5 x \sqrt{x}}{2} \\
& y^{\prime \prime}=\frac{15}{4} x^{\frac{1}{2}}=\frac{15 \sqrt{x}}{4}
\end{aligned}
$$

Required to prove: $\frac{3 y^{\prime}}{y^{\prime \prime}}=2 x$

$$
\begin{aligned}
L H S & =\frac{3 y^{\prime}}{y^{\prime \prime}} \\
& =3 \times \frac{5 x \sqrt{x}}{2} \times \frac{4}{15 \sqrt{x}} \\
& =2 x=\text { RHES. }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { (c) } y=x(x+1)^{3} \\
& u=x \quad v=(x+1)^{3} \\
& n^{\prime}=1 \quad v^{\prime}=3(x+1)^{2} \\
& y^{\prime}=(x+1)^{3}+3 x(x+1)^{2} \\
& =(x+1)^{2}[(x+1)+3 x] \\
& =(x+1)^{2}(4 x+1)
\end{aligned}
$$

Since $(x+1)^{2} \geqslant 0$
$\therefore y^{\prime}>0$ ahen $4 x+1>0$

$$
\therefore \quad x>-\frac{1}{4}
$$

$a y$

$$
\begin{aligned}
& \text { (a) } y=\frac{n}{2 x+1} \\
& n=x \quad v=2 x+1 \\
& n^{\prime}=1 \quad v^{\prime}=2 \\
& y^{\prime}=\frac{2 x+1-2 x}{(2 x+1)^{2}} \\
& y^{\prime}=\frac{1}{(2 x+1)^{2}} \\
& y^{\prime}=(2 x+1)^{-2} \\
& y^{\prime \prime}=-2(2 x+1)^{-3} \times 2
\end{aligned}
$$

$y^{\prime \prime}=\frac{-4}{(2 x+1)^{3}} \neq 0$ for all $x$.
$\therefore$ no pouts of ifterion.

01
(b)
(i)

$$
\begin{aligned}
& f(x)=4 x^{3}-x^{4}=x^{3}(4-x) \\
& f^{\prime}(x)=12 x^{2}-4 x^{3}=4 x^{2}(3-x) \\
& f^{\prime \prime}(x)=24 x-12 x^{2}=12 x(3-x)
\end{aligned}
$$

$$
f^{\prime}(x)=0 \text { when } 4 x^{2}(3-x)=0
$$

$$
\begin{aligned}
& \therefore \quad x=0 \quad \& \quad x=3 \\
& f(0)=0 \quad \& \quad f(3)=27
\end{aligned}
$$

$\therefore$ Stationary ponts are:

$$
\begin{aligned}
& (0,0) \&(3,27) \\
& f^{\prime \prime}(3)=12(3)(-1)<0 \\
& \therefore(3,27) \text { is arax }
\end{aligned}
$$

smee $f^{\prime \prime}(0)=0$ using $f^{\prime}(n)$ fable to dassify:

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $f^{\prime}(x)$ | + | 0 | + |

$$
\begin{aligned}
& =4(4)>0
\end{aligned}
$$

$$
f^{\prime}(-1)=4(4)>0
$$

$$
f^{\prime}(1)=4(2)>0
$$

$\therefore(0,0)$ is a hosizontal pont of mfferion.
(io)
$f^{\prime \prime}(x)=0$ nher $12 x(2-x)=0$

$$
\therefore x=0 \quad \& \quad x=2
$$

$f(2)=16 \therefore(2,16)$ is $a$
possible point of inflexim.

| $x$ | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $f^{\prime \prime}(x)$ | + | 0 | - |

$$
\begin{aligned}
& f^{\prime \prime}(1)=12(1)>0 \\
& f^{\prime \prime}(3)=12(3)(-1)<0
\end{aligned}
$$

$\therefore(2,16)$ is a point of inflexi2n $(0,0)$ was alruady clawsifiont in part (i).
(b)


Q 3
(a)

$$
\begin{aligned}
& f(x)=x^{4}-4 x^{2}+3 \\
& f^{\prime}(x)=4 x^{3}-8 x \\
& f^{\prime}(x)=4 x\left(x^{2}-2\right)
\end{aligned}
$$

$f^{\prime}(x)=0$ when $4 x\left(x^{2}-2\right)=0$ When $4 x(x-\sqrt{2})(x+\sqrt{2})=0$

$$
\begin{aligned}
& \therefore x=0 \quad \& x= \pm \sqrt{2} \\
& f(-1)=1-4+3=0 \\
& f(2)=2^{4}-2^{4}+3=3 \\
& f(0)=3 \\
& f(\sqrt{2})=4-8+3=-1
\end{aligned}
$$

$\therefore$ global minimum value is -1 .
Note: $x=-\sqrt{2}$ is igmoreat as it is outside of the domain.
(b)
(i) $D=\sqrt{(x-1)^{2}+y^{2}}$
but $y^{2}=2 x$

$$
\begin{aligned}
\therefore D & =\sqrt{(x-1)^{2}+2 x} \\
D & =\sqrt{x^{2}-2 x+1+2 x} \\
D & =\sqrt{x^{2}+1}
\end{aligned}
$$

(cir)

$$
\begin{aligned}
D & =\left(x^{2}+1\right)^{1 / 2} \\
\frac{d D}{d x} & =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \times 2 x \\
\frac{d D}{d x} & =\frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

$\therefore \frac{d D}{d x}=0$ when $x=0$.

| $x$ | -1 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| $\frac{d D}{d x}$ | - | 0 | + |
|  |  |  |  |

$$
\left.\frac{d D}{d x}\right|_{x=-1}=-\frac{1}{\sqrt{2}}
$$

$$
\left.\frac{d D}{d n}\right|_{n=1}=\frac{1}{\sqrt{2}}
$$

$\therefore x=0$ gives minimam D.
$y(0)=0 \quad \therefore(0,0)$ is the clusest porint.

Alternativaly:
To minimas D it suffrees to mikinise $D^{2}$

$$
\begin{aligned}
& D^{2}=x^{2}+1 \\
& \frac{d D^{2}}{d x}=2 x \\
& \frac{d D^{2}}{d x}=0 \text { whan } x=0 \\
& \frac{d^{2} D^{2}}{d x^{2}}=2>0 \quad \therefore \quad \begin{array}{l}
\text { miasiman } D^{2} \\
\\
\text { inhizh gives } \\
\\
\text { minimam } D .
\end{array}
\end{aligned}
$$

04
(N)

$$
\begin{aligned}
& \text { (i) } f(x)=2 \sqrt{x}-\frac{2}{\sqrt[3]{x}}+1 \\
& f(x)=2 x^{\frac{1}{2}}-2 x^{-\frac{1}{3}}+1 \\
& F(x)=\frac{4}{3} x^{\frac{3}{2}}-3 x^{\frac{2}{3}}+x+c \\
& F(x)=\frac{4}{3} x \sqrt{x}-3 x^{\frac{2}{3}}+x+c .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { ii) } f(x)=\frac{1}{\sqrt{2 x+1}} \\
& f(x)=(2 x+1)^{-\frac{1}{2}} \\
& F(x)=\frac{(2 x+1)^{\frac{1}{2}}}{2\left(\frac{1}{2}\right)}+C \\
& F(x)=\sqrt{2 x+1}+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y^{\prime}=3(x+1)^{2} \\
& y=3 \times \frac{(x+1)^{3}}{3}+C \\
& y=(x+1)^{3}+c
\end{aligned}
$$

but $y(1)=10$

$$
\begin{aligned}
& \therefore 10=2^{3}+c \quad \therefore c=2 \\
& \therefore y=(x+1)^{3}+2
\end{aligned}
$$

(c)

$$
\begin{aligned}
& y^{\prime \prime}=1+\frac{1}{x^{3}} \\
& y^{\prime \prime}=1+x^{-3} \\
& y^{\prime}=x-\frac{1}{2} x^{-2}+c \\
& y=\frac{x^{2}}{2}+\frac{1}{2} x^{-1}+C x+D \\
& y=\frac{1}{2} x^{2}+\frac{1}{2}+C x+D \\
& y(1)=0 \\
& \therefore 0=\frac{1}{2}+\frac{1}{2}+C+D \\
& \therefore C+D=-1 \cdots \\
& y(-1)=5 \\
& \therefore 5=\frac{1}{2}-\frac{1}{2}-C+D \\
& \therefore-C+D=5 \cdots(2)
\end{aligned}
$$

(1) + (2):

$$
\begin{gathered}
2 D=4 \\
\therefore D=2 \\
\therefore C=-3 \\
\therefore y=\frac{1}{2} x^{2}+\frac{1}{2 x}-3 x+2
\end{gathered}
$$

QRO
(a)
(i)

$$
\begin{aligned}
& \int x^{3}+4 x^{2}-1 d x \\
= & \frac{x^{4}}{4}+\frac{4}{3} x^{3}-x+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int 6(1-2 x)^{5} d x \\
= & 6 \int(1-2 x)^{5} d x \\
= & 6 \times \frac{(1-2 x)^{6}}{-2 \times 6}+c \\
= & -\frac{1}{2}(1-2 x)^{6}+c
\end{aligned}
$$

(iir)

$$
\begin{aligned}
& \int \sqrt{x}\left(x+\frac{1}{x}\right) d x \\
= & \int x^{\frac{3}{2}}+x^{-\frac{1}{2}} d x \\
= & \frac{2}{5} x^{\frac{5}{2}}+2 x^{\frac{1}{2}}+c \\
= & \frac{2}{5} x^{2} \sqrt{x}+2 \sqrt{x}+c
\end{aligned}
$$

(b)
(i)

$$
\int_{-2}^{2} x^{5}-x^{3}+x d x=0
$$

as $f(x)=x^{5}-x^{3}+x$ is an old function.
(h)

$$
\text { (ii) } \begin{aligned}
& \int_{0}^{10} \frac{3}{10\left(\frac{x}{5}-1\right)^{4}} d x \\
= & \frac{3}{10} \int\left(\frac{x}{5}-1\right)^{-4} d x \\
= & \frac{3}{10} \times\left[\frac{\left(\frac{x}{5}-1\right)^{-3}}{-3\left(\frac{1}{5}\right)}\right]_{0}^{10} \\
= & -\frac{1}{2}\left[\frac{1}{\left(\frac{x}{5}-1\right)^{3}}\right]_{0}^{10} \\
= & -\frac{1}{2}\left[\frac{1}{1}-(-1)\right] \\
= & -1
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int_{1}^{k} k+x d x=0 \\
& {\left[k x+\frac{x^{2}}{2}\right]_{1}^{k}=0} \\
& k^{2}+\frac{k^{2}}{2}-\left(k+\frac{1}{2}\right)=0 \\
& k^{2}+\frac{k^{2}}{2}-k-\frac{1}{2}=0 \\
& 2 k^{2}+k^{2}-2 k-1=0 \\
& 3 k^{2}-2 k-1=0 \\
& 3 k>+1 \\
& k \\
& (3 k+1)(k-1)=0 \\
& \therefore k=-\frac{1}{3} k k=1 \\
& \therefore k=1 \text { onk as } k>0
\end{aligned}
$$

Qil) $\quad y=x^{2}-4 x+3=(x-3)(x-1)$
(a)


$$
=\left[\frac{x^{3}}{3}-2 x^{2}+3 x\right]_{2}^{3}
$$

$$
=\left(3^{2}-2 \times 3^{2}+3^{2}\right)-\left(\frac{8}{3}-8+6\right)
$$

$$
=-\frac{2}{3}
$$

$$
\int_{3}^{4} x^{2}-4 x+3 d x
$$

$$
=\left[\frac{x^{3}}{3}-2 x^{2}+3 x\right]_{3}^{4}
$$

$$
=\left(\frac{4^{3}}{3}-32+12\right)-0
$$

$$
=\frac{4}{3}
$$

$$
\therefore \text { Arm }=\frac{2}{3}+\frac{4}{3}=2 \text { nnit }^{2}
$$

(b)


$$
\begin{aligned}
& y=\sqrt{x-1} \\
& y^{2}=x-1 \\
& \therefore x=y^{2}+1 \\
& A=\int_{0}^{1} y^{2}+1 d y \\
& =\int_{\frac{y}{3}}^{3}+y \int_{0}^{1} \\
& =\frac{1}{3}+1=\frac{4}{3} \text { anit }^{2}
\end{aligned}
$$

(c)
(i) $x=a \quad \& \quad x=c$
(ii) $x<a$ \& $x>c$
(iv) $b<x<d$.

Qil2
1a)

$$
\begin{aligned}
& y=a x^{3}+b x^{2}+c x+d \\
& y^{\prime}=3 a x^{2}+2 b x+c
\end{aligned}
$$

only one stationary pont implins $3 a x^{2}+2 b x+c=0$ ondy has one solution, whith implind $\Delta=0$

$$
\begin{gathered}
\Delta=(2 b)^{2}-4(3 a)(c)=0 \\
4 b^{2}-12 a c=0 \\
b^{2}-3 a c=0 \\
\therefore b^{2}=3 a c
\end{gathered}
$$

(b)
(i)


$$
r^{2}=a^{2}-(x-a)^{2}
$$

$$
r^{2}=a^{2}-\left(x^{2}-2 a x+a^{2}\right)
$$

$$
r^{2}=a^{2}-x^{2}+2 a x-a^{2}
$$

$$
r^{2}=2 a x-x^{2}
$$

(in)

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} x \\
& V=\frac{1}{3} \pi x\left(2 a x-x^{2}\right) \\
& V=\frac{1}{3} \pi\left(2 a x^{2}-x^{3}\right)
\end{aligned}
$$

(CiO)

$$
\begin{aligned}
& \frac{d V}{d x}=\frac{1}{3} \pi\left(4 a x-3 x^{2}\right) \\
& \frac{d^{2} V}{d x^{2}}=\frac{1}{3} \pi(4 a-6 x) \\
& \frac{d V}{d x}=0 \text { when } \frac{1}{3} \pi\left(4 a x-3 x^{2}\right)=0 \\
& \frac{1}{3} \pi x(4 a-3 x)=0 \\
& \therefore x=0 \text { or } x=\frac{4 a}{3}
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{d^{2} V}{d x^{2}}\right|_{x=\frac{4 a}{3}} & =\frac{1}{3} \pi\left[4 a-6\left(\frac{4 a}{3}\right)\right] \\
& =\frac{1}{3} \pi(4 a-8 a) \\
& =-\frac{4 a \pi}{3}
\end{aligned}
$$

Non $a>0 \therefore-\frac{4 a \pi}{3}<0$
$\therefore x=\frac{4 a}{3}$ gres max $V$.
Note: $\left.\frac{d^{2} v}{d x^{2}}\right|_{x=0}=\frac{4 \pi \pi}{3} s_{0} \therefore x=0$, mas minv
(c)
since $|x|=\left\{\begin{array}{cl}x & \text { if } x \geqslant 0 \\ -x & \text { if } x \leq 0\end{array}\right.$

$$
\begin{aligned}
& \therefore \int_{-1}^{2} 121+x^{2} d x=\int_{-1}^{0}-x+x^{2} d x+\int_{0}^{2} x+x^{2} d x \\
& =\left[\frac{-x^{2}}{2}+\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}+\frac{x^{3}}{3}\right]_{0}^{2} \\
& =0-\left(-\frac{1}{2}-\frac{1}{3}\right)+\left(2+\frac{8}{3}\right)-0 \\
& =\frac{5}{6}+\frac{14}{3}=\frac{11}{2} .
\end{aligned}
$$

