

Extension 1 Mathematics

HSC Assessment 2

25th February 2011

Time Allowed: 45 minutes

Instructions:

- Show all necessary workings
- · Approved non-programmable calculators may be used
- Begin a new sheet of paper for each question

Outcomes to be assessed:

Methods of Integration: P2, P8, H4, H5, H8, PE2, HE6 - E11.5, E13.6 Polynomials: PE3 - 16.1 - 16.4

Calculus	Q1, Q2	/20
Functions	Q3	/12
	Total	/32

QUESTION ONE (10 MARKS) BEGIN A NEW SHEET OF PAPER

a) i) Differentiate
$$y = x \sin 3x$$
 (1)

ii) Hence find
$$\int x\cos(3x)dx$$
 (2)

b) Using the substitution
$$u = 2 + x$$
, find $\int x(2+x)^4 dx$ (3)

c) Using the substitution
$$x = 2\cos\theta$$
, find $\int_0^1 \sqrt{4 - x^2} dx$ (4)

QUESTION TWO (10 MARKS) BEGIN A NEW SHEET OF PAPER

- a) (i) Show that the curve $f(x) = 3 x \log_e x$ has an x-intercept between x = 2 and x = 3. (2)
 - (ii) Use two applications of the halving the interval method to find between which two numbers the curve cuts the x-axis, with a difference of 0.25.
- b) The curve $y = 2 \sin(\frac{x}{2})$ and the line $y = \frac{x}{3}$ are on the same number plane.
 - Show that the x-coordinates of their points of intersection satisfy the equation $6\sin\left(\frac{x}{2}\right) x = 0.$
 - (ii) By sketching the graphs of the two functions, show that the equation in part (i) has a root between 4 and 5.
 - (iii) Using 4.5 as a first approximation, use Newton's method once to find another approximation to the root correct to one decimal place.

QUESTION THREE (12 MARKS) BEGIN A NEW SHEET OF PAPER

- a) (i) Using long division, prove that (2x 3) is a factor of $P(x) = 6x^3 + 5x^2 33x + 18$. (2)
 - (ii) Hence completely factorise P(x). (2)
- b) (x-k) is a factor of $x^2 5x + (2k+2)$. Using the factor theorem, find the values of k. (2)
- c) When the polynomial $P(x) = ax^3 + ax^2 + 3x + 3$ is divided by (x + 2), the remainder is 5. (2) Find the value of a, using the remainder theorem.
- d) If α , β , γ are the roots of $x^3 2x^2 + 3x + 7 = 0$, find the values of:

$$(i) \qquad \frac{2}{\alpha} + \frac{2}{\beta} + \frac{2}{\gamma} \tag{2}$$

(ii)
$$\alpha^2 + \beta^2 + \gamma^2 \tag{2}$$