THE SCOTS COLLEGE

Assessment Task
Year 12

Ext-1 Mathematics

HSC Task 1: Tuesday $21{ }^{\text {st }}$ February,
Week 4, Term 12012
Weighting of Task: 10%
Time allowed: 45 minutes

Directions:

- All 12 questions must be attempted on your own paper.
- Questions 1 to 5 are Multiple Choice A, B, C, or D only.
- Write your name on each page.
- Start a new page for questions 6 to 12 .
- Show all necessary working in questions 6 to 12 .
- Approved calculators may be used.

Topics Assessed

Integration of Trigonometric functions.(Q,9) /5
Solution of trigonometric equations.($\mathbf{Q}, \mathbf{3 , 6 , 1 2}$) /8
Polynomials and Numerical Estimation of Roots. $(\mathbf{Q}, 1,7,10)$ /10
Inverse Functions and Inverse Trigonometric Functions.(Q,2,4,5,8,11) /17
Total Marks:

Questions 1 to 5 ONLY are multiple choice (1 mark each). For questions 1 to 5, write A,B,C or D on your answer sheet.

1. When $x^{2}+4 x+5 b$ is divided by x the remainder is -10 . The value of b is
(A) 2
(B) -12
(C) -2
(D) 0
2. The domain of $y=-2 \sin ^{-1}(1-4 x)$ is
(A) $\frac{-\pi}{2} \leq x \leq \frac{\pi}{2}$
(B) $\quad \frac{-1}{2} \leq x \leq \frac{1}{2}$
(C) $0 \leq x \leq \frac{1}{2}$
(D) $\frac{-\pi}{8} \leq x \leq \frac{\pi}{8}$
3. $2 \cos \left(t-\frac{\pi}{3}\right)$ can be rewritten as
(A) $\cos t-\sqrt{3} \sin t$
(B) $2 \cos t-2 \cos \frac{\pi}{3}$
(C) $\cos t+\sqrt{3} \sin t$
(D) $\sin t-\sqrt{3} \cos t$
4. $\cos ^{-1}(-x)=$
(A) $\pi-\cos ^{-1} x$
(B) $\pi+\cos ^{-1} x$
(C) $\sin ^{-1} x$
(D) $-\sin ^{-1} x$
5. $\sin \left(2 \tan ^{-1} \frac{2}{3}\right)=$
(A) $\frac{\sqrt{13}}{12}$
(B) $\frac{12}{\sqrt{13}}$
(C) $\frac{6}{\sqrt{13}}$
(D) $\frac{12}{13}$

For Questions 6 to 12 start each question on a new page and show all working.
6.
$5 \operatorname{Cos} \theta+12 \operatorname{Sin} \theta \square \mathrm{R} \operatorname{Cos}(\theta-\alpha)$ where $\mathrm{R}>0$ and α is acute.
(a) Find the value of R.
(b) Find the size of α to 3 decimal places.
(c) Hence solve to 3 decimal places

$$
\begin{equation*}
5 \operatorname{Cos} \theta+12 \operatorname{Sin} \theta=13 \text { for } 0 \leq \theta \leq 4 \pi \tag{2}
\end{equation*}
$$

7.

(a) Show that $\sin x=x-1$ has a root near $x=2$
(b) Use Newton's Method once to find a better approximation to this root.
(Answer to 2 decimal places)
8.

The function $f(x)=3 x-x^{3}$ has a minimum turning point at $(-1,-2)$ and a maximum turning point at $(1,2)$.
(a) Sketch $y=f(x)$ showing given turning points and intercepts on both axes.
(b) Find the largest domain containing the origin for which $f(x)$ has an inverse function $y=f^{-1}(x)$.
(c) Find the domain and range of $y=f^{-1}(x)$.
(d) Sketch $y=f^{-1}(x)$ clearly showing the end points.
9.
(a) Find $\sin ^{2} 3 x d x$
(b) Find in terms of π the volume of the solid formed when $y=\cos x$ is rotated about the x -axis from $x=0$ to $x=\frac{\pi}{2}$.
10.
(a) If α, β, γ are the roots of $x^{3}+4 x-9=0$ find $\alpha(\beta+1)+\beta(\gamma+1)+\gamma(\alpha+1)$
(b) Given that $Q(x)=4 x^{3}+k x+6$ has a root at $x=-3$.
(i) Find k.
(ii) Write $Q(x)$ in the form $(x+3)\left(a x^{2}+b x+c\right)$
11. Given the function $f(x)=2 \sin ^{-1}\left(\frac{x}{3}\right)$
(a) Find $f(0)$
(b) State the domain and range of $y=f(x)$
(c) Draw the graph of $y=f(x)$ showing the end points.
12. Given $\sqrt{2} \cos \theta=1$
(a) Write the general solution for this equation in terms of π.
(b) Solve for $\mathrm{n}=-1$ and $\mathrm{n}=2$. Answer in terms of π.

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Q1. $P(0)=\frac{2012}{-10} E_{x t-1}$ HSC Task1-Solutwit.

$$
\begin{aligned}
\therefore 5 b & =-10 \\
b & =-2
\end{aligned}
$$

22

$$
\begin{gather*}
-1 \leqslant 1-4 x \leqslant 1 \\
-2 \leqslant-4 x \leqslant 0 \\
\frac{1}{2} \geqslant x \geqslant 0 \tag{C}
\end{gather*}
$$

Q3

$$
\begin{align*}
2 \cos \left(t-\frac{\pi}{3}\right) & =2 \cos t \cos \frac{\pi}{3}+2 \sin t \sin \frac{\pi}{3} \\
& =2 \cos t \times \frac{1}{2}+2 \sin t \times \frac{\sqrt{3}}{2} \tag{C}\\
& =\cos t+\sqrt{3} \sin t .
\end{align*}
$$

24 $\quad \cos ^{-1}(-x)=\pi-\cos ^{-1} x$
Q5 $\quad \sin \left(2 \tan ^{-1} \frac{2}{3}\right)=\sin 2 B$
where $\tan B=\frac{2}{3}$

$$
\begin{align*}
\therefore \cos B & =\frac{3}{\sqrt{13}} \\
\sin B & =\frac{2}{\sqrt{13}} \\
& =2 \sin B \cos B \\
& =2 \times \frac{2}{\sqrt{13}} \times \frac{3}{\sqrt{13}} \\
& =\frac{12}{13} .
\end{align*}
$$

Q6. (a) $\frac{5}{R} \cos \theta+\frac{12}{R} \sin \theta \equiv \cos (\theta-\alpha)$

$$
\begin{align*}
\therefore \cos \alpha & =\frac{5}{R} \quad \sin \alpha=\frac{12}{R} \\
\therefore R & =\sqrt{12^{2}+5^{2}} \\
R & =13 \tag{1}
\end{align*}
$$

(b) $\quad \tan \alpha=\frac{12}{5}$
7. (a)

$$
\begin{equation*}
f(1.9)=0.046 \quad \text { abowe } x \text {-a+is } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f(2.1)=-0.0237 \text { below } x \text {-axis } \tag{1}
\end{equation*}
$$

\therefore root exist betwien $1.9 \mathrm{and} 2-1$.
(b)

$$
\begin{align*}
a_{1} & =a-\frac{f(a)}{f^{\prime}\left(a_{1}\right)} \\
& =\frac{2-(\sin 2-2+1)}{\cos 2-1} \tag{1}\\
& =1.94
\end{align*}
$$

8. $f(x)=3 x-x^{3}$
(a)

(2) - roots/yintericant
(b) $D_{P}: \quad-1 \leqslant x \leqslant 1$
(c) $D_{f^{-1}}:-2 \leqslant x \leqslant 2$

$$
\begin{equation*}
R_{p-1}:-1 \leq y \leq 1 \tag{2}
\end{equation*}
$$

(d)

$$
\text { q (a) } \begin{aligned}
\int \sin ^{2} 3 x d x & =\frac{1}{2} \int 1-\cos 6 x d x \\
& =\frac{1}{2}\left(x-\frac{1}{6} \sin 6 x\right)+c \\
& =\frac{1}{2} x-\frac{1}{12} \sin 6 x+c . \text { (1) }
\end{aligned}
$$

7. (a)

$$
\begin{equation*}
f(x)=\sin x-x+1 \tag{1}
\end{equation*}
$$

$f(1.9)=0.046$ aboue x-atis
$f(2.1)=-0.0237$ below x-axis
\therefore root exist between 1.9 ast 2.1.
(b)

$$
\begin{align*}
a_{1} & =a-\frac{f(a)}{f^{\prime}\left(a_{1}\right)} \\
& =\frac{2-(\sin 2-2+1)}{\cos 2-1} \tag{1}\\
& =1.94
\end{align*}
$$

8. $f(x)=3 x-x^{3}$
(a)

$$
\text { (2) }- \text { roots/yintercapt }
$$

(b) $D_{f}:-1 \leq x \leq 1$
(1)
(c)

$$
\begin{align*}
& D_{f^{-1}}:-2 \leq x \leq 2 \tag{2}\\
& R_{f^{-1}}:-1 \leq y \leq 1
\end{align*}
$$

(d)

$$
\text { 9 (a) } \begin{aligned}
\int \sin ^{2} 3 x d x & =\frac{1}{2} \int_{1}^{t} 1-\cos 6 x d x \\
& =\frac{1}{2}\left(x-\frac{1}{6} \sin 6 x\right)+c \\
& =\frac{1}{2} x-\frac{1}{12} \sin 6 x+c \cdot(1)
\end{aligned}
$$

q. (b)

$$
\begin{aligned}
V & =\pi \int_{0} \cos ^{2} x d x \\
& =\frac{1}{2} \pi S_{0}^{\frac{\pi}{2}}(1+\cos 2 x) d x \\
& =\frac{1}{2} \pi\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{2} \pi\left[\left(\frac{\pi}{2}+\frac{1}{2} \sin \pi\right)-\left(0+\frac{1}{2} \sin 0\right)\right] \\
& =\frac{1}{2} \pi\left[\frac{\pi}{2}+\frac{1}{2}\right] \\
v & =\frac{\pi^{2}+\pi}{4} u^{3}
\end{aligned}
$$

10) (a)

$$
\begin{aligned}
\alpha(\beta+1)+\beta(\gamma+1)+\gamma(\alpha+1) & =\alpha \beta+\alpha+\beta \gamma+\beta+\gamma \alpha+\gamma \\
& =\alpha \beta+\beta \gamma+\gamma \alpha+\alpha+\beta+\gamma \\
& =4+0 \\
& =4 .
\end{aligned}
$$

(b) (i) $0=-108-3 k+6$

$$
\begin{aligned}
3 k & =-102 \\
k & =-34 .
\end{aligned}
$$

(11) $x+3 \frac{4 x^{2}-12 x+2}{\frac{4 x^{3}-34 x+6}{0}} \checkmark \quad \therefore 2(x)=(x+3)\left(4 x^{2}-12 x+2\right)$
11. (a) $f(0)=2 \sin ^{-1}(6)$

$$
f(0)=0
$$

(b)

$$
\begin{aligned}
D_{f}:-1 & \leqslant \frac{x}{3} \leq 1 \\
-3 & \leqslant x \leq 3
\end{aligned}
$$

$$
\begin{aligned}
R_{f}: & -\frac{\pi}{2}
\end{aligned} \leqslant \frac{y}{2} \leqslant \frac{\pi}{2} .
$$

(c)

$12 \quad \cos \theta=\frac{1}{\sqrt{2}}$
(a) $\theta=2 n \pi \pm \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

$$
\theta=2 n \pi \pm \frac{\pi}{4}
$$

(b) $n=-1$

$$
n=2
$$

$$
\theta=-2 \pi \pm \frac{\pi}{4}, \theta=4 \pi \pm \frac{\pi}{4} .
$$

$$
\begin{aligned}
& 3 \text { - endptr } \\
& \text { - onge: }
\end{aligned}
$$

- curcdrity.

