THE SCOTS COLLEGE

Assessment Task

Year 12

Ext-1 Mathematics

HSC Task 1: Tuesday 21st February, Week 4, Term 1 2012

Weighting of Task:10%

Time allowed: 45 minutes **Directions:**

- All 12 questions must be attempted on your <u>own</u> paper.
- Questions 1 to 5 are Multiple Choice A, B, C, or D only.
- Write your name on each page.
- Start a new page for questions 6 to 12.
- Show <u>all</u> necessary working in questions 6 to 12.
- Approved calculators may be used.

Topics Assessed

Integration of Trigonometric functions.(Q,9)	/5
Solution of trigonometric equations.(Q,3,6,12)	/8
Polynomials and Numerical Estimation of Roots.(Q,1,7,10)	/10
Inverse Functions and Inverse Trigonometric Functions.(Q,2,4,5,8,11)	/17

Total Marks:

/40

Questions 1 to 5 ONLY are multiple choice (1 mark each). For questions 1 to 5, write A, B, C or D on your answer sheet.

- 1. When $x^2 + 4x + 5b$ is divided by x the remainder is -10. The value of b is
- (A) 2 (B) -12 (C) -2 (D) 0

2. The domain of
$$y = -2\sin^{-1}(1-4x)$$
 is

(A)
$$\frac{-\pi}{2} \le x \le \frac{\pi}{2}$$
 (B) $\frac{-1}{2} \le x \le \frac{1}{2}$ (C) $0 \le x \le \frac{1}{2}$ (D) $\frac{-\pi}{8} \le x \le \frac{\pi}{8}$

3.
$$2\cos(t-\frac{\pi}{3})$$
 can be rewritten as

(A) $\cos t - \sqrt{3}\sin t$ (B) $2\cos t - 2\cos\frac{\pi}{3}$

(C)
$$\cos t + \sqrt{3}\sin t$$
 (D) $\sin t - \sqrt{3}\cos t$

4.
$$\cos^{-1}(-x) =$$

(A)
$$\pi - \cos^{-1} x$$
 (B) $\pi + \cos^{-1} x$ (C) $\sin^{-1} x$ (D) $-\sin^{-1} x$

5.
$$\sin(2\tan^{-1}\frac{2}{3}) =$$

(A)
$$\frac{\sqrt{13}}{12}$$
 (B) $\frac{12}{\sqrt{13}}$ (C) $\frac{6}{\sqrt{13}}$ (D) $\frac{12}{13}$

End of Multiple Choice Section

For Questions 6 to 12 start each question on a new page and show all working.

6.

$$5\cos\theta + 12\sin\theta \circ R\cos(\theta - \alpha)$$
 where R>0 and α is acute.

(a)	Find the value of R.	(2)
(b)	Find the size of α to 3 decimal places.	(1)

(c) Hence solve to 3 decimal places

$$5\cos\theta + 12\sin\theta = 13 \text{ for } 0 \le \theta \le 4\pi.$$
 (2)

7.

(a) Show that $\sin x = x - 1$ has a root near x = 2 (2)

 (b) Use Newton's Method once to find a better approximation to this root. (Answer to 2 decimal places)
 (2)

8.

The function $f(x) = 3x - x^3$ has a minimum turning point at (-1,-2) and a maximum turning point at (1,2).

(a)	Sketch $y = f(x)$ showing given turning points and intercepts on both axes.	(2)
(b)	Find the largest domain containing the origin for which $f(x)$ has an inverse function $y = f^{-1}(x)$.	(1)
(c)	Find the domain and range of $y = f^{-1}(x)$.	(2)

(d) Sketch
$$y = f^{-1}(x)$$
 clearly showing the end points. (3)

(a) Find
$$\dot{O}\sin^2 3x \, dx$$
 (2)

(b) Find in terms of
$$\pi$$
 the volume of the solid formed
when $y = \cos x$ is rotated about the x-axis
from $x = 0$ to $x = \frac{\pi}{2}$. (3)

10.

9.

(a) If
$$\alpha$$
, β , γ are the roots of $x^3 + 4x - 9 = 0$
find $\alpha(\beta+1) + \beta(\gamma+1) + \gamma(\alpha+1)$ (2)

(b) Given that
$$Q(x) = 4x^3 + kx + 6$$
 has a root at $x = -3$.

- (i) Find k. (1)
- (ii) Write Q(x) in the form $(x+3)(ax^2+bx+c)$ (2)

11. Given the function
$$f(x) = 2\sin^{-1}(\frac{x}{3})$$

(a) Find $f(0)$ (1)

- (b) State the domain and range of y = f(x) (2)
- (c) Draw the graph of y = f(x) showing the end points. (3)
- 12. Given $\sqrt{2}\cos\theta = 1$
 - (a) Write the general solution for this equation in (1) terms of π .
 - (b) Solve for n = -1 and n = 2. Answer in terms of π . (1)

END OF EXAMINATION

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

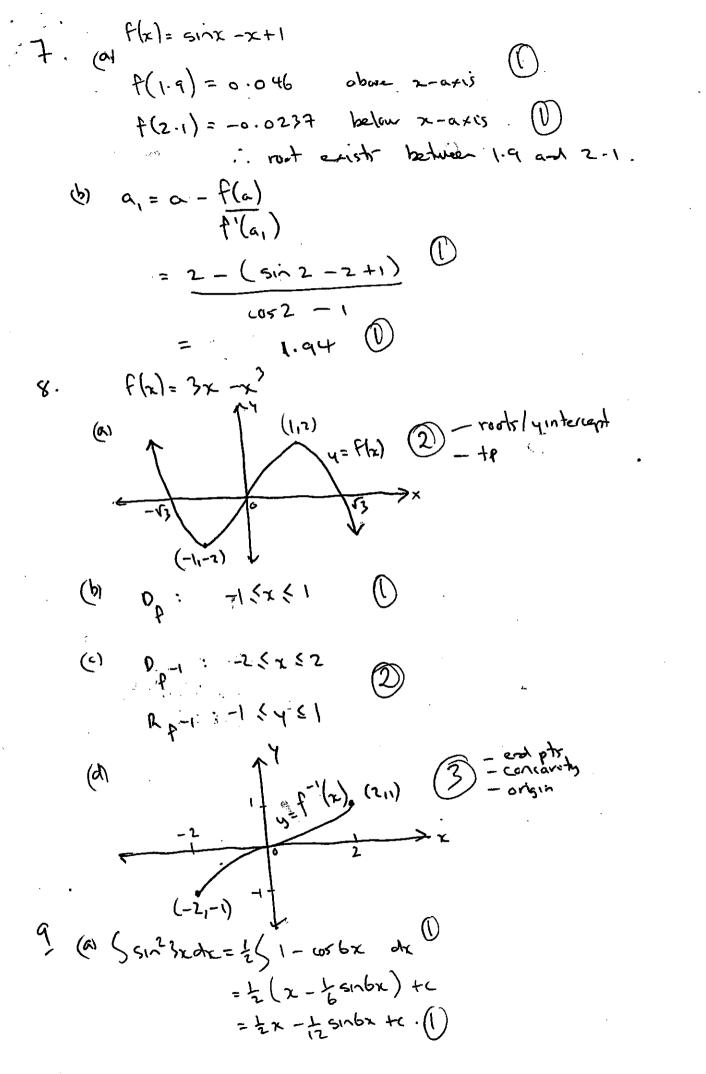
$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

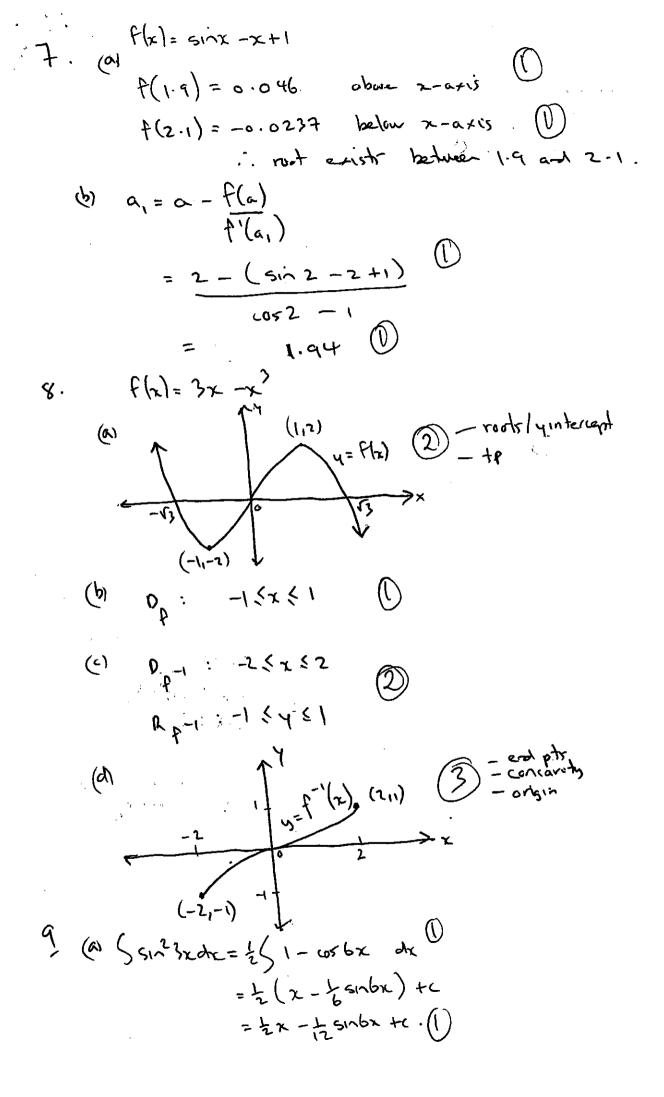
$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$


$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$


$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x$, x > 0

.

9. (a)
19. (b)
10.
$$\pi = \frac{1}{2} \pi \int_{-\pi}^{\pi} \frac{1}{2} + \frac{1}{2} \sin 2\pi \int_{-\pi}^{\pi} \frac{1}{2} + \frac{1}{2} \sin 2\pi \int_{-\pi}^{\pi} \frac{1}{2} + \frac{1}{2} \sin 2\pi \int_{-\pi}^{\pi} \frac{1}{2} + \frac{1}{2$$