The Scots

College

Year 12 Mathematics Extension 2

Assessment 1

February 2007

General Instructions

- Working time - 50 minutes
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question

TOTAL MARKS: 40

WEIGHTING: 10\%

- Attempt all questions

OUTCOMES

QUESTION/ OUTCOME	A student combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions	A student uses the relationship between algebraic and geometric representations of complex numbers
Question 1	$/ 10$	
Question 2		
TOTAL	$/ 40$	
PERCENTAGE		

(i) Sketch the curve $f(x)=x^{2}-2 x-3$ on the number plane provided at back.
(ii) Sketch $y=\frac{1}{f(x)}$ on a separate diagram
(iii) Sketch $y=\sqrt{f(x)}$ on a separate number plane.
(iv) Sketch $y=f(|x|)$ on a separate diagram
(v) Sketch $\operatorname{Ln} f(x)$ on the number plane displaying the graph of $y=f(x)$.

QUESTION 2 [10 MARKS]

The points A and B on the Argand plane provided represent the complex numbers z_{1} and z_{2} respectively.

Mark the position of the following complex numbers with the letter indicated, on the number plane provided at back:
(i) $\mathrm{C}=z_{1}+z_{2}$
(ii) $\mathrm{D}=z_{1}-z_{2}$
(iii) $\mathrm{E}=i z_{2}$
(iv) $\mathrm{F}=z_{1} z_{2}$
(v) $\quad \mathrm{G}=\overline{z_{2}-z}$

Sketch the graphs of the following on the Argand plane provided.
a. \quad (i) $\quad 0 \leq \operatorname{Im}|z| \leq \sqrt{3}, \quad 1 \leq \operatorname{Re}(z) \leq 3$
(ii) Determine all possible values of $\arg (z)$.
b. (i) Sketch $|z-2+2 i| \leq 2$
(ii) Hence or otherwise determine the maximum value of $|z|$.
[2]
c. (i) Sketch the locus represented by $\operatorname{Arg}\left(\frac{z-1}{z-i}\right)=\frac{\pi}{4}$
(ii) Describe this locus geometrically.
a. (i) Express $z=1+\sqrt{3} i$ on the form R cis θ.
(ii) Hence verify the result $|z|^{2}=z \bar{z}$
(iii) Find the square roots of z.
b. (i) Find the five fifth roots of unity.
(ii) By considering $z^{5}=1$ show that $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$

Question 1 Answer Sheet

Parts (i) and (v) ONLY

Question 2 Answer Sheet

QI
(i)
$\begin{aligned} f(x) & =x^{2}-2 x-3 \\ & =(x-3)(x+1)\end{aligned}$
$=(x-3)(x+1)$.

$$
f(0)=-3
$$

$f(x)=0$ where $x=-1$ or 3 .
(ii)

(iii)
(iv)

Q2

(b)

maximum $|z|$
(ii)

$$
\begin{aligned}
& O C=2 \sqrt{2} \\
& C P=2 \quad(\text { Radius })
\end{aligned}
$$

So $O P=2+2 \sqrt{2}$

$$
|z|=2(1+\sqrt{2})
$$

(c)
 and $\beta=\arg (z-i)$ So $\alpha-\beta=\frac{\pi}{4}$
Major are of a erode centre $c(1,1)$ and taches, wundt temmating at $(0,1)$ and $(1,0)$.

Qu $|a|$ (i)

$$
\begin{aligned}
z & =1+\sqrt{3} i \\
& =2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
z & =2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
|z| & =2 \\
|z|^{2} & =4 \\
z \bar{z} & =2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \cdot 2\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right) \\
& =4\left(\cos ^{2} \frac{\pi}{3}-i^{2} \sin ^{2} \frac{\pi}{3}\right) \\
& =4\left(\cos ^{2} \frac{\pi}{3}+\sin ^{2} \frac{\pi}{3}\right) \\
& =4 \\
& =|z|^{2}
\end{aligned}
$$

(iii)

For $z^{2}=1+\sqrt{3} i$

$$
\left|z^{2}\right|=|1+\sqrt{3} i|=2
$$

$|z|=\sqrt{2}$ and so $z=\sqrt{2} \operatorname{cis} \theta$
Now $(\sqrt{2} \operatorname{cis} \theta)^{2}=2 \operatorname{cis} \frac{\pi}{3}$

$$
\begin{aligned}
& \text { How } \begin{aligned}
& \sqrt{2} \cos \theta 2 \theta=2 \operatorname{cis} \frac{\pi}{3} \\
& \cos 2 \theta+i \sin 2 \theta=\frac{1}{2}+\sqrt{3} i \\
& \cos 2 \theta=\frac{1}{2}, \sin 2 \theta=\frac{\sqrt{3}}{2} \\
& 2 \theta=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3} \cdots, 2 \theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{7 \pi}{3} \cdots \\
& \text { so } 2 \theta=\frac{\pi}{3}, \frac{7 \pi}{3} \\
& \theta=\frac{\pi}{6}, \frac{7 \pi}{6} \\
& \text { and } z_{1}=\sqrt{2} \operatorname{cis} \frac{\pi}{6}, \quad z_{2}=\sqrt{2} \operatorname{cis} \frac{7 \pi}{6} .
\end{aligned}
\end{aligned}
$$

(b) (i) Let $z=\cos \theta+i \sin \theta$ be a toot op unity

$$
\begin{aligned}
& \text { Lo }(\cos \theta+i \sin \theta)^{5}=1 \\
& \cos 5 \theta+i \sin 5 \theta=1
\end{aligned}
$$

$$
\begin{aligned}
& (\cos \theta+i \sin \theta) \\
& \cos 5 \theta+i \sin 5 \theta=1
\end{aligned}
$$

$$
\cos 5 \theta=1
$$

$$
\begin{aligned}
& 5 \theta=1 \\
& 50=0,2 \pi, 4 \pi, 6 \pi, 8 \pi \\
&
\end{aligned}
$$

$$
5 \theta=0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5}
$$

Roots are: $z_{1}=1, z_{2}=\operatorname{cis}\left(-\frac{2 \pi}{5}\right), z_{3}=\operatorname{cis}\left(-\frac{4 \pi}{5}\right)$, $z_{4}=\operatorname{cis} \frac{2 \pi}{5}, z_{5}=\cos \frac{4 \pi}{5}$
(ii) Sum 5 roots is $z_{1}+\left(z_{2}+z_{4}\right)+\left(z_{3}+z_{5}\right)$-pairing corrugates $1+2 \cos \frac{2 \pi}{5}+2 \cos 4 \sqrt{5}=0\left(\right.$ From $\left.z^{5}-1=0\right)$
$\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$

