

THE SCOTS COLLEGE

Year 12 Mathematics Extension 2 Assessment 1 February 2007

GENERAL INSTRUCTIONS

- Working time 50 minutes
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question

TOTAL MARKS:	40
WEIGHTING:	10%

Attempt all questions

OUTCOMES

QUESTION/ OUTCOME	A student combines the	A student uses the	
	ideas of algebra and	relationship between	
	calculus to determine the	algebraic and geometric	
	important features of the	representations of complex	
	graphs of a wide variety of	numbers	
	functions		
Question 1			
	/10		
	/10		
Question 2			
		/30	
		100	
TOTAL			
101112	/40		
PERCENTAGE			

QUESTION 1 [10 MARKS]

MARKS

(i) Sketch the curve
$$f(x) = x^2 - 2x - 3$$
 on the number plane provided at back. [2]

(ii) Sketch
$$y = \frac{1}{f(x)}$$
 on a separate diagram [2]

(iii) Sketch
$$y = \sqrt{f(x)}$$
 on a separate number plane. [2]

(iv) Sketch
$$y = f(|x|)$$
 on a separate diagram [2]

(v) Sketch $\operatorname{Ln} f(x)$ on the number plane displaying the graph of y = f(x). [2]

QUESTION 2 [10 MARKS]

The points A and B on the Argand plane provided represent the complex numbers z_1 and z_2 respectively.

Mark the position of the following complex numbers with the letter indicated, on the number plane provided at back:

(i)	$\mathbf{C} = z_1 + z_2$	[2]

(ii)
$$D = z_1 - z_2$$
 [2]

(iii)
$$\mathbf{E} = i z_2$$
 [2]

(iv)
$$F = z_1 z_2$$
 [2]

$$\mathbf{(v)} \quad \mathbf{G} = z_2 - z$$

QUESTION 3 [10 MARKS]

MARKS

MARKS

Sketch the graphs of the following on the Argand plane provided.

a. (i)
$$0 \le \text{Im}|z| \le \sqrt{3}, \ 1 \le \text{Re}(z) \le 3$$
 [2]

(ii) Determine all possible values of
$$\arg(z)$$
. [1]

b. (i) Sketch
$$|z-2+2i| \le 2$$
 [2]

(ii) Hence or otherwise determine the maximum value of |z|. [2]

c. (i) Sketch the locus represented by
$$Arg\left(\frac{z-1}{z-i}\right) = \frac{\pi}{4}$$
 [2]

(ii) Describe this locus geometrically. [1]

QUESTION 4 [10 MARKS]

a. (i) Express
$$z = 1 + \sqrt{3}i$$
 on the form $R \operatorname{cis} \theta$. [2]

- (ii) Hence verify the result $|z|^2 = z\overline{z}$ [1]
- (iii) Find the square roots of z. [2]

b. (i) Find the five fifth roots of unity. [3]

(ii) By considering
$$z^5 = 1$$
 show that $\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} = -\frac{1}{2}$ [2]

QUESTION 1 ANSWER SHEET

Parts (i) and (v) <u>ONLY</u>

QUESTION 2 ANSWER SHEET

