HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 12

MATHEMATICS
 2011

HSC COURSE

ASSESSMENT TASK 3

Examiners ~ J. Dillon, S. Gee and P. Biczo

General Instructions

- Reading Time - 3 minutes.
- Working Time - 40 Minutes.
- Attempt ALL questions.
- All Questions are of equal value.
- All necessary working should be SHOWN IN EACH QUESTION.
- This paper contains Three (3) QUESTIONS.
- Total Marks - 30 marks
- MARKS MAY NOT BE AWARDED FOR CARELESS OR BADLY ARRANGED WORK.
- Board approved calculators and Mathematical Templates may be used.
- A Table of Standard Integrals is PROVIDED FOR YOUR USE.
- EACH QUESTION IS TO BE STARTED IN A NEW BOOKLET.
- THIS ASSESSMENT TASK mUST NOT bE REMOVED FROM THE EXAMINATION ROOM.
(a) Find
(i) $\int(3 x+2) d x$

1
(ii) $\quad \int(2 x+1)^{\frac{1}{2}} d x$
(b) Evaluate
(i) $\int_{1}^{2}(2 x-5)\left(x^{2}-1\right) d x$
(ii) $\int_{-3}^{3}\left(x^{2}+\frac{1}{x^{2}}\right) d x$
(c) (i) On the same diagram sketch the curves $y=x^{2}$ and $y=2 x-x^{2}$.
(ii) Show the points of intersection of the curves $y=x^{2}$ and $y=2 x-x^{2}$ are $(0,0)$ and $(1,1)$.
(iii) Find the area between the curves in the domain $0 \leq x \leq 1$.

Question 2 Start a new booklet

(a) (i) Consider the function $y=\sqrt{9-x^{2}}$.

Copy the following table into your answer booklet.
Complete the table, giving answer correct to two decimal places.

x	1	1.5	2
y	2.83		2.24

(ii) Hence, find an approximation for $\int_{1}^{2} \sqrt{9-x^{2}} d x$ using the Trapezoidal Rule with 2 strips. Give your answer correct to two decimal places.
(b) Use Simpson's Rule with five function values to find an approximation for the area under the curve $y=2 \log _{10} x$ between $x=2$ and $x=4$.
Give your answer to two decimal places.
(c)

The graph above shows the curve $y=x^{2}+1$.
(i) Copy the diagram and shade the area bounded by the curve, the x-axis and the lines $x=0$ and $x=2$
(ii) Find the volume of the solid of revolution formed when this area is rotated about the x-axis.
(iii) The area bounded by the parabola $y=x^{2}+1$, the y-axis and the line $y=4$ is rotated about the y-axis. Find the volume of the solid formed.
(a) Jerry joins a superannuation fund, investing $\$ P$ at the beginning of every year at 9% p.a. compounding annually.
(i) Write an expression for the value of his investment A_{1} at the end of the first year
(ii) Write an expression for the value of his investment A_{2} at the end of the second year
(iii) Show that, after n years, the value of his investment A_{n} is given by

$$
A_{n}=\frac{109 P}{9}\left(1.09^{n}-1\right)
$$

(iv) If, after 30 years, he wishes to collect $\$ 1000000$, calculate the value of P correct to the nearest dollar.
(b) Lisa borrows $\$ 20000$ at 3% per quarter reducible interest. She pays the loan off over 5 years by paying quarterly repayments of $\$ R$.

Let A_{n} be the amount of money that Lisa owes after the nth repayment.
(i) Write an expression for A_{1}.
(ii) Show that $A_{n}=20000 \times 1.03^{n}-R\left(1.03^{n-1}+\ldots . .+1.03^{2}+1.03+1\right)$
(iii) Hence, find the value of R to the nearest dollar.

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}+C, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x+C, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}+C, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x+C, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x+C, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x+C, a \neq 0 \\
\int \frac{\sec a x \tan a x d x}{}=\frac{1}{a} \sec a x+C, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan { }^{-1} \frac{x}{a}+C, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin \frac{1}{a} \frac{x}{a}+C, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{array}
$$

$$
\text { NOTE }: \ln x=\log _{e} x, \quad x>0
$$

Question No. 1 Solutions and Marking Guidelines
Outcomes Addressed in this Question: P3, P4

Outcome	Solutions	Marking Guidelines
P3	(a) (i) $\int(3 x+2) d x=\frac{3 x^{2}}{2}+2 x+C$ (ii) $(2 x+1)^{\frac{1}{2}} d x=\frac{(2 x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}}+C$ $\int_{=} \frac{(2 x+1)^{\frac{3}{2}}}{3}+C$ Note: $\frac{(2 x+1) \sqrt{2 x+1}}{3}+C$ is acceptable.)	1 mark: Complete \& C 1 mark: Complete \& C
	(b) (i) $\begin{aligned} & \int_{1}^{2}(2 x-5)\left(\left(x^{2}-1\right) d x=\int_{1}^{2}\left(2 x^{3}-2 x-5 x^{2}+5\right) d x\right. \\ & =\frac{x^{4}}{2}-x^{2}-\frac{5 x^{3}}{3}+5 x_{1}^{2} \end{aligned}$	3 marks: Complete solution 2 marks: Substantial progress 1 mark: Some progress

$$
=\left[8-4-\frac{40}{3}+10\right]-\left[\frac{1}{2}-1-\frac{5}{3}+5\right]
$$

$$
=\frac{2}{3}-\frac{17}{6}
$$

$$
=\frac{-13}{6} \text { or }-2.17
$$

(ii)

Either

$$
\begin{aligned}
& \int_{-3}^{3} x^{2}+\frac{1}{x^{2}} d x=\frac{x^{3}}{3}-\frac{1}{x}^{3} \\
&= {\left[9-\frac{1}{3}\right]-\left[-9+\frac{1}{3}\right] } \\
&= 17 \frac{1}{3} \\
& O
\end{aligned}
$$

$x^{2}+\frac{1}{x^{2}}$ is an even function
$\int_{-3}^{3} x^{2}+\frac{1}{x^{2}} d x=2 \int_{0}^{3} x^{2}+\frac{1}{x^{2}} d x$
$=2\left\{\frac{x^{3}}{3}-\frac{1}{x}\right\}_{0}^{3}=$???????????????

3 marks: Complete solution
2 marks: Substantial 1 mark: Some progress

2 marks: Complete solution either $17 \frac{1}{3}$ or the problem with the question.

Year 12 Task 3 Mathematic
Outcomes Addressed in this Question
H8 uses techniques of integration to calculate areas and volumes

Outcome	Solutions	Marking Guidelines
	a) (i) 2.60 (ii) $\begin{aligned} \int_{1}^{2} \sqrt{9-x^{2}} d x & =\frac{0.5}{2}\{2.83+2 \times 2.60+2.24\} \\ & =2.57 \text { (to } 2 \text { d.p.) } \end{aligned}$ b) $\begin{aligned} \int_{2}^{4} 2 \log _{10} x d x & =\frac{0.5}{3}\left\{2 \log _{10} 2+4 \times 2 \log _{10} 2.5+2 \log _{10} 3\right\} \\ & +\frac{0.5}{3}\left\{2 \log _{10} 3+4 \times 2 \log _{10} 3.5+2 \log _{10} 4\right\} \\ & =1.88 \text { (to } 2 \text { d.p.) } \end{aligned}$ c) (i) (ii) $V=\pi \int_{0}^{2} y^{2} d x=\pi \int_{0}^{2}\left(x^{2}+1\right)^{2} d x$ $\begin{aligned} & =\pi \int_{0}^{2}\left(x^{4}+2 x^{2}+1\right) d x \\ & =\pi\left[\frac{x^{5}}{5}+\frac{2 x^{3}}{3}+x\right]_{0}^{2} \\ & =\pi\left(\frac{32}{5}+\frac{16}{3}+2\right)=\frac{206 \pi}{15} \mathrm{u}^{3} \end{aligned}$ (iii) If $y=x^{2}+1$, then $x^{2}=y-1$. $\begin{aligned} V=\pi \int_{1}^{4} x^{2} d y & =\pi \int_{1}^{4}(y-1) d y \\ & =\pi\left[\frac{y^{2}}{2}-y\right]_{1}^{4} \\ & =\pi\left(8-4-\left(\frac{1}{2}-1\right)\right)=\frac{9 \pi}{2} \mathrm{u}^{3} \end{aligned}$	1 mark : correct answer 2 marks : correct solution 1 mark: substantial progress towards correct answer
		2 marks : correct solution 1 mark: substantial progress towards correct answer
		1 mark: correct area
		2 marks : correct solution 1 mark : substantial progress towards correct answer
		2 marks : correct solution 1 mark : substantial progress towards correct answer

H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

Part	Solutions	Marking Guidelines
(a) (i)	$A_{1}=P(1.09)$	Award 1 for correct solution
(ii)	$\begin{aligned} A_{2} & =A_{1}(1.09)+P(1.09) \\ & =P(1.09)^{2}+P(1.09) \end{aligned}$	Award 1 for correct solution
(iii)	$A_{3}=A_{2}(1.09)+P(1.09)$	Award 2 for correct solution
	$\begin{aligned} & =P\left((1.09)^{2}+(1.09)\right)+P(1.09) \\ & =P(1.09)^{3}+P(1.09)^{2}+P(1.09) \\ & =P\left(1.09^{3}+1.09^{2}+1.09\right) \end{aligned}$	Award 1 for substantial progress towards solution.
	$\begin{aligned} A_{n} & =P\left(1.09^{n}+1.09^{n-1}+\ldots . .+1.09\right) \\ & =P\left(1.09+1.09^{2}+\ldots . .+1.09^{n}\right) \\ & =P \times \frac{1.09\left(1.09^{n}-1\right)}{1.09-1} \\ & =\frac{109 P}{9}\left(1.09^{n}-1\right) \end{aligned}$	
(iv)	$\begin{aligned} & 1000000=\frac{109 P}{9}\left(1.09^{30}-1\right) \\ & \begin{aligned} \therefore P & =\frac{9}{109} \times \frac{1000000}{\left(1.09^{30}-1\right)} \\ & =6730.597606 \\ & =\$ 6731 \text { (to nearest dollar) } \end{aligned} \end{aligned}$	Award 1 for correct solution
(b) (i) (ii)	$A_{1}=20000(1.03)-R$	Award 1 for correct solution
	$A_{2}=A_{1}(1.03)-R$	Award 2 for correct solution
	$=20000(1.03)^{2}-1.03 R-R$	
	$A_{3}=A_{2}(1.03)-R$	progress towards solution
	$=20000(1.03)^{3}-1.03^{2} R-1.03 R-R$	
	$\begin{aligned} A_{n} & =A_{n-1}(1.03)-R \\ & =20000(1.03)^{n}-1.03^{n-1} R-1.03^{n-2} R-\ldots \ldots .-R \\ & =20000(1.03)^{n}-R\left(1.03^{n-1}+1.03^{n-2}+\ldots . .+1.03^{2}+1.03\right) \end{aligned}$	

(iii)

$$
\begin{aligned}
& A_{n}=20000(1.03)^{n}-R\left(1.03^{n-1}+1.03^{n-2}+\ldots . .+1.03^{2}+1.03\right) \\
&=20000(1.03)^{n}-R\left(1.03+1.03^{2}+\ldots . .+1.03^{n-2}+1.03^{n-1}\right) \\
&=20000(1.03)^{n}-R \frac{1\left(1.03^{n}-1\right)}{1.03-1} \\
&=20000(1.03)^{n}-\frac{100}{3} R\left(1.03^{n}-1\right) \\
& A_{20}=0 \\
& 0=20000(1.03)^{20}-\frac{100}{3} R\left(1.03^{20}-1\right) \\
& R=1344.314152 \\
& \therefore R=\$ 1344 \text { (nearest dollar) }
\end{aligned}
$$

Award 2 for correct solution
Award 1 for substantial progress towards solution

