QUESTION 1 (15 Marks)

(a) By "completing the square" or otherwise, find the minimum value of $2 x^{2}-4 x+5$ for all real values of x.
(b) A radioactive substance of mass M decays at a rate proportional to its mass present, ie; $M=M_{0} e^{k t}$.
Its initial mass is 400 grams and reduces to 300 grams after 2 years.
(i) How many grams have decayed at the end of four years?
(ii) The half-life of the substance is the time taken for the mass to be reduced by half. What is the half-life of the substance, (to the nearest month).
(c) The equation of motion of an object moving $x \mathrm{~cm}$ about a fixed point O, after t seconds, along a straight line is given by $x=\tan t$ for $0 \leq t<\frac{\pi}{2}$.
(i) Express its velocity $v(t)$ and acceleration $a(t)$ in terms of t.
(ii) Show that its acceleration is $a(t)=2 x\left(1+x^{2}\right)$.

QUESTION 2 (15 Marks)

(a) For what values of k is $k x^{2}+(3+k) x+(3+k)$ positive definite.
(b) Nine marbles numbered $1,2,3,4,5,6,7,8 \& 9$ are placed in a bag and three are drawn out at random (each not replaced). What is the probability that the sum of the numbers on the three marbles drawn is odd.
(c) The equation of motion of a particle moving x metres along a straight line after t seconds is given by $x(t)=2 t^{3}-6 t^{2}+3$.
(i) What is the particle's initial speed and acceleration.
(ii) When and where does it first come to rest.
(iii) Sketch a velocity/time graph and briefly explain what is happening to the motion when $t=1$ second.
(iv) Briefly describe the motion of the particle
(a) The population of two colonies after t years is given by $P_{1}=2000 e^{0.138 t}$ and $P_{2}=5000 e^{0.04 t}$. The initial population of each was recorded on the $1^{\text {st }}$ January, 2006.
(i) How long will it take for the population P_{1} to triple. (Answer to the nearest year.)
(ii) Calculate the year and month when both populations are the same.
(iii) Calculate the rate at which P_{1} is increasing at this time.
(b) Two chess players, Bostik and Spastik, play three games of chess to contest a win. In any game they play, the probability that Bostik wins is $\frac{5}{10}$ and the probability that Spastik wins is $\frac{4}{10}$.
What is the probability that Bostik wins the competition.
(c) An object moves $x \mathrm{~cm}$ along a straight line after t seconds with its velocity function $v=-e^{-2 t}$ for $t \geq 0$ and is initially at the origin.
(i) Derive an expression for its displacement as a function of time. 3
(ii) Neatly sketch $x=f(t)$ for $t \geq 0$.

QUESTION 4 (15 Marks)

(a) Find all real values of t for which the quadratic equation $\frac{x^{2}-x+1}{x^{2}+x+1}=t$ has real and different roots.
(b) A particle of unit mass is projected vertically upwards from a point O with a velocity of $25 \mathrm{~m} / \mathrm{s}$ and has an acceleration of $-10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Find its velocity and height above O after a time $t>0$. 3
(ii) Find its maximum height of projection. $\mathbf{2}$
(b) A deck of cards contains the red Jacks, Queens, Kings and Aces from a normal pack of 52 playing cards (ie; the Hearts and Diamonds).
Jenny is dealt two cards from this deck of cards. What is the probability that:
(i) She has two Aces if she announces that she has at least one Ace. 2
(ii) She has a pair if she announces that she does not have the 2 Ace of Hearts.
(iii) She has two cards of the same suit if she announces that she has at least one Heart and one King.

END of PAPER

YEAR 12 TERM 2
H.S.C. ASSESSMENT 2006

SOLUTIONS

1

$$
\begin{aligned}
& \text { (a) } 2 x^{2}-4 x+5 \\
& =2\left(x^{2}-2 x+\frac{5}{2}\right) \\
& =2\left(x^{2}-2 x+1+\frac{3}{2}\right) \\
& =2(x-1)^{2}+3
\end{aligned}
$$

\therefore MIN of 3 at $x=1$ $O R$ using $x=\frac{-b}{2 a}$

$$
\begin{aligned}
& x=1 \therefore 2(1)^{2}-4(1)+5 \\
&=3
\end{aligned}
$$

(c) (i) $x=\tan t$
$\therefore v(t)=\sec ^{2} t$

- (i)
$\therefore a(t)=2 \sec t \cdot \sec t \tan t$
$\therefore a(t)=2 \sec ^{2} t \tan t-(2)$
(ii) $a(t)=2 \tan t\left(1+\tan ^{2} t\right)$

$$
\therefore a(t)=2 x\left(1+x^{2}\right)
$$

since $x=\tan t$
$2(a) K x^{2}+(3+K) x+(3+K)$
We require $k>0$ and $\Delta<0$

$$
\begin{aligned}
\Delta & =(3+k)^{2}-4 K(3+k) \\
& =(3+k)(3+k-4 k) \\
& =(3+k)(3-3 k) \\
& =3(3+k)(1-k)
\end{aligned}
$$

For $\Delta<0$

$$
\longrightarrow
$$

For $11>0$ we require only $k>1$.

$$
\therefore 175 \text { gins. decayed. }
$$

$$
\therefore t=4.82 \text { years }
$$

$$
=4 \text { years } 10 \text { months. }
$$

(b)

$$
\text { (ii) When } \begin{aligned}
& M=\frac{1}{2} M_{0} \\
& \therefore \frac{1}{2} \ln \frac{3}{4} \\
& \therefore \quad=\mathcal{N}_{0} e^{\frac{1}{2}} \\
& \therefore \quad \ln \frac{1}{2}=\frac{1}{2} \ln \frac{3}{4} \\
& \therefore \quad t=\frac{2 \ln 0.5}{\ln 0.75}
\end{aligned}
$$

$$
\begin{aligned}
P & =P(E+E+0)+P(0+0+0) \\
& =4\left(\frac{4}{9} \times \frac{3}{8} \times \frac{5}{7}\right) \\
& =\frac{4 \times 5}{3 \times 2 \times 7}
\end{aligned}
$$

$$
\therefore P=\frac{10}{21}
$$

$$
\begin{aligned}
2(c)(i) x(t) & =2 t^{3}-6 t^{2}+3 \\
v(t) & =6 t^{2}-12 t \\
a(t) & =12 t-12
\end{aligned}
$$

When $t=0$
(iii)

Where $t=1$ it reaches maximum speed on zee force acting on the particle
(ii) \&t comes to west when $v=0$ ie; when $t=0$ or $t=2$. Silurid $t>0$ \therefore when $t=2$ and $x=-5$ ie: 5 metres left of 0 .
(iv) The particle stanto 3 m right of 0 increasing its speed for 1 sec. Then slaw down and stops 5 m left ago and passing through 0 between 2 and 3 seconds, It then increases its speed moving night of 0 m definitely.

3 (a)(i) $P_{1}=2000 e^{0.138 t}$
when $P_{1}=4000$

$$
\begin{aligned}
& 4000=2000 e^{0.138 t} \\
\therefore & \ln 2=0.138 t \\
\therefore & t=5.023 \\
\therefore & t=5 \text { year (nearest year) }
\end{aligned}
$$

$$
P_{2}=5000 e^{0.04 t}
$$

$$
\text { (ii) when } P_{1}=P_{2}
$$

$$
2000 e^{0.138 t}=5000 e^{0.00 t t}
$$

$$
\therefore e^{0.098 t}=\frac{5}{2}
$$

$$
\therefore 0.098 t=\ln 2.5
$$

$$
\therefore t=9.349
$$

$$
=9 \text { years } 5 \text { month }
$$

when $t=9.349$

$$
\begin{aligned}
\frac{d P_{1}}{d t} & =276 e^{1.290162} \\
& =1002.8
\end{aligned}
$$

$\approx 1003 /$ year.
(b)

$$
\begin{aligned}
& P=\left(\frac{5}{10} \times \frac{5}{10}\right)+\left(\frac{5}{10} \times \frac{1}{10} \times \frac{5}{10}\right)+\left(\frac{5}{10} \times \frac{1}{10} \times \frac{1}{10}\right)+\left(\frac{5}{10} \times \frac{4}{10} \times \frac{5}{10}\right) \\
& +\left(\frac{1}{10} \times \frac{5}{10} \times \frac{5}{10}\right)+\left(\frac{1}{10} \times \frac{5}{10} \times \frac{1}{10}\right)+\left(\frac{1}{10} \times \frac{1}{10} \times \frac{5}{10}\right)+\left(\frac{5}{10} \times \frac{5}{10} \times \frac{5}{10}\right) \\
& =\frac{25}{100}+\frac{25}{1000}+\frac{5}{1000}+\frac{100}{1000}+\frac{135}{1000}
\end{aligned}
$$

$$
\therefore P=\frac{103}{200}
$$

$$
\begin{aligned}
& 3(c)(i) v=\frac{d x}{d t}=-e^{-2 t} \\
& \therefore x=-\int e^{-2 t} d t \\
& \therefore x=\frac{1}{2} e^{-x t}+c \\
& \text { when } t=0, x=0 \\
& \therefore 0=\frac{1}{2}+c \quad \therefore c=-\frac{1}{2} \\
& \therefore x=\frac{1}{2} e^{-2 t}-\frac{1}{2} \\
& \therefore x=\frac{1}{2}\left(e^{-2 t}-1\right) \\
& 4(a) x^{2}-x+1=t \\
& x^{2}+x+1 \\
& \therefore x^{2}-x+1=t x^{2}+t x+t \\
& \therefore(t-1) x^{2}+(t+1) x+(t-1)=0
\end{aligned}
$$

For real and different roots, we require $\Delta>0$
Now $\Lambda=(t+1)^{2}-4(t-1)^{2}$

$$
=t^{2}+2 t+1-4 t^{2}+8 t-4
$$

$$
=-3 t^{2}+10 t-3
$$

$$
=-3\left(t^{2}-10 t+3\right)
$$

For $\Delta>0$

$$
(3 t-1)(t-3)<0
$$

$$
\therefore \frac{1}{3}<t<3
$$

(ii) When $t=0, x=0$

$$
\text { Let } x=\frac{1}{2}\left(\frac{1}{e^{2 t}}-1\right)
$$

$$
\text { as } t \rightarrow \infty, \frac{1}{e^{z t}} \rightarrow 0=t \rightarrow-\frac{1}{2}
$$

(b)

$$
\left\{\begin{array}{lc}
\downarrow & v=\frac{d x}{d t}=25 \\
-10 \mathrm{ma}^{2} & \therefore x=\int 25 d t \\
\left.\right|_{v=25 \mathrm{~m}} \quad \therefore x=25 t+c \\
& \therefore \text { when } t=0, x=0 \therefore c=0 \\
\therefore & x=25 t
\end{array}\right.
$$

Now $\frac{d v}{d t}=-10$

$$
\therefore d t=-\int 10 d t
$$

$$
\therefore v=-10 t+C
$$

when $t=0, v=0 \therefore c=0$

$$
\therefore v=-10 t
$$

(i) Now $v=25-10 t$ (nance $v t=25 \mathrm{~m})$

$$
\begin{aligned}
& \therefore \frac{d x}{d t}=25-10 t \\
& \therefore x=\int(25-10 t) d t \\
& \therefore x=25 t-5 t^{2}+C
\end{aligned}
$$

When $t=0, x=0 \quad \therefore c=0$

$$
\therefore \quad x=25 t-5 t^{2}
$$

(ii) Maximum height when $v=0$, ie, when $t=\frac{5}{2}$ When $t=\frac{5}{2}, x=25\left(\frac{5}{2}\right)-5\left(\frac{5}{2}\right)^{2}$

$$
\therefore x=3 / \frac{1}{4} \mathrm{~m} .
$$

4. (c)(i)

(ii)

$p=\frac{2}{26}=\frac{1}{13}$
(iii)

$$
P=\frac{6}{20}=\frac{3}{10}
$$

