Year 12 Mathematics Term II Examination 2007				
QUE	2UESTION 1. a) Solve for $y = 2x^2 + 1 > 21$			
(a)	50106	$z = 10f X : -2x + 1 \ge -31$	2	
(b)	If α and β are the roots of the equation $4x^2 - 3x + 5 = 0$ find :			
	(i)	$\alpha + \beta$	1	
	(ii)	$\frac{1}{\alpha} + \frac{1}{\beta}$	2	
	(iii)	$\alpha^2 + \beta^2$	2	
(c)	(i)	State the condition for equal roots of a quadratic equation.	1	
	(ii)	The line with equation $y = mx - 9$ is a tangent to the parabola with equation $y = x^2$. Find the values of <i>m</i> .	2	
(d)	The a metro has a funct	acceleration x of a particle is given by $x = 15\sqrt{t}$, where the displacement is x es and time t seconds. If the particle is initially 4 metres to the left of the origin and n initial velocity of -3 metres per second, find the velocity and displacement ions in terms of time t .	2	
(e)	Two By us	dice each with the numbers 2, 4, 6, 8, 10 and 12 on their faces are thrown. sing a dot diagram or otherwise, find the probability that the sum is greater than 10.	3	
QUE (a)	STION Write to	N 2. e a quadratic equation with the sum of roots equal to 6 and the product of roots equal 4.	2	
	A particle moves horizontally in a straight line. The displacement x metres as a function of time t seconds is given by $x = 4t^3 - 15t^2 - 18t - 6$			
(b)	(i)	Find the initial displacement, initial velocity and initial acceleration.	3	
	(ii)	Find the time and displacement when the particle comes to rest.	3	
	(iii)	Determine the direction of motion after the particle comes to rest. Justify your answer.	2	
	As a	sliding door closes in time t seconds, the door opening xcm is given by $x = Ae^{-kt}$.		
(c)	(i)	Show that the rate of closure of the door $\frac{dx}{dt}$ is proportional to the size of the door opening <i>x</i> .	1	
	(ii)	If the initial opening is 80 cm and the initial speed of closure is 10 cm/s, find the values of A and k .	2	
JRAHS	(iii) 5 Maths (2	Find the time(correct to 2 decimal places) for the door to be 80% closed. 2U) T2 2007	2 1	

QUESTION 3.

Marks

1

- (a) The velocity v m/s against time t seconds graph shown is comprised of straight lines and a circular arc.
 - (i) Copy the graph, hence graph directly beneath using the same time scale :

- (β) the displacement function x against time t for $0 \le t \le 10$ if the particle is initially at the origin .(Use scale 1cm= 2m)
- (b) A car travels at 100 km/hr along a straight horizontal road at night. Posts are placed at 5m intervals along the left side of the road.
 - (i) Find the speed of the car in metres per second (correct to 2 decimal places).
 - (ii) A truck with bright lights approaches the car from the opposite direction and blinds the driver of the car for 2 seconds.
 - (α) Find the distance the car travels while the driver is blinded, hence show that the number posts N that the car could pass is 12.

If the probability of not hitting a post is $\frac{99}{100}$, find the probability of :

- (β) not hitting the first three posts (4 decimal places).
 - (γ) hitting at least one post while the driver is blinded (4 decimal places). 2

2

3

1

2

QUESTION 4.

(a) The displacement function of a particle is given by : $x = \sqrt{1+t^2}$.

By finding x show that the direction of the force applied to the particle never changes.

(b)

The chord shown cuts the circle with equation $x^2 + y^2 = 1$ at the points A and P.

(i)	Find the equation in gradient intercept form, of the chord AP with gradient m .	1
(ii)	Show that the <i>x</i> values of the intersection points <i>A</i> and <i>P</i> satisfy the equation $(m^2 + 1)x^2 + 2m^2x + m^2 - 1 = 0$	2
(iii)	Find the co-ordinates of the intersection point <i>P</i> .	3
(iv)	If $\angle PAO = \alpha$ show $\angle POB = 2\alpha$, giving reasons.	2
(v)	Hence find an expression for $\tan 2\alpha$ in terms of $\tan \alpha$.	2

End Of Examination

YR12 - 2007 - Term 2 -24 MATHEMATICS SOLUTIONS (e) <u>24681012</u> 2 1 -2n 11 77-31 10 12 (a) $-2\pi^{2} - 32$ $n^2 \leq 16$ 4 -45n Q4 () $\lambda + \beta = 3$ 4 と) (i) 1 / 1 / 1 / 1 10 1 +1 - 24B 12 1 1 1 1 1 1 (ìi) L B LP Û $P\left(sum 7:0\right) = 26 = 13$ = <u>5</u> <u>5</u> <u>4</u> () ()36 2(9) K-6n-4=0 - 3 0 (4) $k = 4t^3 - 15t^2 - 15t - 6t$ $(iii) = 2^{2} 4 \beta^{2} = (24\beta)^{2} - 24\beta^{3}$ $v = 12 t^2 - 30 t - 18$ (1)k= 21.t -30 $= \left(\frac{3}{4}\right)^2 - 2\chi^5$ (i) t=0 $w=-6m \int 6m left of 0$ $u=-18m/s \int 18m/s left]0$ $il = -36m/s^2$ 0 (ii) v=0= -31 16 =-15 0 (i) v=0 12 t2-30t -18=0. c)(i) ふこの $\kappa^2 = m_{i}^2 - 9$ 2t'-5t-3 =0. ('u') $(2 \pm 4)(x - 3) = 0$ $\kappa^2 - m\kappa + 9 = 0$ 0 $f = -\frac{1}{2}$ by f = 31=0 Û m'-36 =0 Bit \$70 : += 3,0 and 0 10= -87 m. (m=±6 (1) K= 15 t 1) k= -87 m. U k = 10 t 32 + C ill w = 24x3-30 = 42 $\dot{n} = -3$ t = 0. ()70. -3= 0 +C C=-3 i. Rosce MR 70 asm70x70 $k = 10t^{3/2} - 3$ Particle moves right from (!)rest, never steps or $k = 4 t^{3/2} - 3 t + C$ changes desition after t73 x=-4 t=0.=7 c=-4 $1 = 4t^{3} - 3t - 4$ (1)

$$2\mathbf{C}(1) \quad \mathcal{X} = \mathcal{A} e^{-\mathbf{k}\cdot\mathbf{X}}$$

$$\frac{d\mathbf{x}}{d\mathbf{x}} = -\mathbf{k}\mathbf{A} e^{-\mathbf{k}\cdot\mathbf{X}}$$

$$\frac{d\mathbf{x}}{d\mathbf{x}} = -\mathbf{k}\mathbf{x} \quad \mathbf{x}$$

$$\frac{d\mathbf{x}}{d\mathbf{x}} = -\mathbf{k}\mathbf{x}$$

$$\frac{d\mathbf{x}}{d\mathbf{x}} =$$

100× 1000 3600 (d) (i) v= = 27.78 m/s O (ii) (d) Distance travelled = 2x27.78 = 55.56 m Number posts = 55.56 21 (PY) $P(\tilde{H} \tilde{H} \tilde{H}) = 0.99^{3}$ Ø O = 0.9703 (BS) P(Hutting) = 1- P(Not Hutting) O = 1- 0.99" = 0.1136 Ð 4(a) $\mathcal{K} = \sqrt{1+t^2}$ R= X TI+f Z $\ddot{x} = \overline{JI+y^2} - t \cdot \frac{t}{JI+y^2}$ $1+y^2$ $= \frac{1+t^2-t^2}{(1+t^2)^{3/2}}$ $=\frac{1}{(l+it^{2})^{2}}$ >0 for all tro Ø Since F = MK ミンク : Direction time always >0 and neve equals zero O i Rape never charges distition

15 1) iPAR = & given [PIB= [PHO + COFA] Extense angle transle is equal to] = 24. 2004 = 2000 angles epposite equal provide to equal to] = 24. 2004 Epposite angles = 24. 2004 Angles = 24. 2004 Angles = 24. 2004 Angles 2005 Angles 2004 (Ii) $y-y_{i} = m(n-k_{i})$ y - 0 = m(x + i)y= mk + m ($nc^2 + (m\chi' + m)^2 = 1$ lc' + m' lc' + 2m' k + ln' = l0 $(14m^2)n^2 + 2m^2 \times 4m^2 - (=0)$ $\left(n + i \left(\left(1 + m^2 \right) n + m^2 - i \right) = 0$ \bigcirc 1c = -1 in $1c = \frac{1-m^2}{1+m^2}$ \bigcirc . $B_{-ut} = \frac{1-m}{1+m^2}$ $y_{p} = -\frac{l_{m}}{(1+l_{m})^{2}} + l_{m}$ V) Trin $2d = \frac{3p}{\kappa_p}$ $= \frac{m - m^{3} + m^{3} + ln}{(l + m^{2})^{2}}$ $= \frac{2m}{1-m^2}$ But m= Tond :. Tan 2d = $P = \left(\frac{1-m^2}{14m^2} + \frac{2m}{14m^2}\right)$ 2 Tund () 1- Tom' 1