

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC MATHEMATICS ASSESSMENT TASK

TERM 2 - 2006

Time Allowed: 1 hour +2 minutes reading time

Instructions:

- Start each question on a new page
- Write on one side of the paper only, work down the page and do not work in columns
- Leave a margin on the left hand side of the page
- Show all necessary working
- Marks may not be awarded for untidy or poorly arranged work
- Diagrams are not drawn to scale
- There are five questions
- Marks are as indicated

This task is worth 20% of the HSC Assessment Mark

Name: \qquad
a. Evaluate $\log _{8} 32$ 1
b. Simplify $\log _{5} 45+\log _{5} 40-\log _{5} 72 \quad \mathbf{1}$
c. Given that $\log _{2} 3=1 \cdot 58$, find $\log _{2} 12 \quad \mathbf{1}$
d. Find $\int_{0}^{1}\left(e^{x}+1\right) d x$ in exact form
e. Evaluate $\int_{0}^{3} \frac{x}{1+x^{2}} d x$

Question 2 (10 marks) Start a new page.
a. For the curve $y=3 \sin 2 x$
i. State the period and amplitude.
ii. Sketch the curve between $0 \leq x \leq 2 \pi$
b. Find all solutions of $2 \sin x+1=0$ in the interval $0 \leq x \leq 2 \pi$.
(Give your answer/s as exact values).
2
c. Differentiate the function $y=3 \sin x+4 \cos x$
d. Evaluate $\int_{0}^{\frac{\pi}{4}}\left(\sin 2 x+\sec ^{2} x\right) d x$

Question 3 (9 marks) Start a new page.
a. The following table gives the values of $f(x)=x \log x$. Use Simpson's Rule with these 5 function values to find an approximate value of $\int_{1}^{5} x \log x d x$.
(Give your answer to 2 decimal places)

x	1	2	3	4	5
$f(x)$	0	$1 \cdot 39$	$3 \cdot 3$	$5 \cdot 55$	$8 \cdot 05$

b.
i. Find the derivative of $\tan 2 x$.
ii. Find the volume of the solid formed when the curve $y=\sec 2 x$ is rotated about the x-axis between the ordinates $x=0$ and $x=\frac{\pi}{8}$.
c.
i. The x-coordinate of one point of intersection between the line $y=x+1$ and the parabola $y=2 x^{2}$ is $x=-\frac{1}{2}$. Using quadratic equations, or otherwise, find the x-coordinate of the other point of intersection.
ii. Hence, find the area enclosed between the line and the parabola.
a. The area under the curve $y=\frac{1}{x}$ between $x=1$ and $x=b$ is equal to 1 square unit. What is the value of b ?
b. A solid of revolution is formed by rotating about the x-axis the curve $y=2\left(1+e^{2 x}\right)$ between the ordinates $x=0$ and $x=\frac{1}{2}$. Show the volume of the solid is $\pi\left(e^{2}+4 e-3\right)$ units 3.
c. For the curve $y=\log (1+\sin x)$, show that the second derivative is given by $\frac{-1}{1+\sin x}$

Question 5 (8 marks) Start a new page.

a. In the diagram the length of the $\operatorname{arc} A B$ is 50 cm . The radius of the circle is 90 cm .

i. Find $\angle A O B$ in radians
ii. Find the shaded area correct to the nearest cm^{2}.
b. In the figure $A B$ and $C D$ are circular arcs which subtend an angle x radians at the centre E, where $0 \leq x \leq \pi$. The length $A D$ is 200 metres and $D E$ is 400 metres.
i. Find the length of each of the $\operatorname{arcs} A B$ and $C D$ in terms of x.
ii. A person lives at A and wants to walk to the train station at B.

The paths $A B, B C, C D$ and $D A$ form a road. For what values of x is it shorter for the person to walk along the route $A D C B$ rather than along the arc AB ?

END OF TEST

Solutions

(1) (a) $\quad \log _{8} 32=x$
$\therefore 8^{x}=32=2^{5} \Rightarrow 2^{3 x}=2^{5}$
$\therefore x=\frac{5}{3}$

Alternatively

$\log _{8} 32=\frac{\ln 32}{\ln 8}=\frac{5}{3} \quad$ (calculator)
(b) $\log _{5} 45+\log _{5} 40-\log _{5} 72=\log _{5}\left(\frac{45 \times 40}{72}\right)=\log _{5} 25=2$
(c) $\log _{2} 12=\log _{2}\left(2^{2} \times 3\right)=\log _{2}\left(2^{2}\right)+\log _{2}(3)=2+\log _{2}(3) \approx 3 \cdot 58$
(d) $\int_{0}^{1}\left(e^{x}+1\right) d x=\left[e^{x}+x\right]_{0}^{1}=(e+1)-(1+0)=e$
(e) $\int_{0}^{3} \frac{x}{1+x^{2}} d x=\frac{1}{2} \int_{0}^{3} \frac{2 x}{1+x^{2}} d x=\frac{1}{2}\left[\ln \left(1+x^{2}\right)\right]_{0}^{3}=\frac{1}{2}(\ln 10-\ln 1)=\frac{1}{2} \ln 10$
(2) (a) (i) Amplitude $=3$

$$
\text { Period }=\frac{2 \pi}{2}=\pi
$$

(ii)

(b) $2 \sin x+1=0 \Rightarrow \sin x=-\frac{1}{2}$
$\therefore x=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
(c) $y=3 \sin x+4 \cos x$
$\therefore y^{\prime}=3 \cos x-4 \sin x$
(d) $\int_{0}^{\frac{\pi}{4}}\left(\sin 2 x+\sec ^{2} x\right) d x=\left[-\frac{\cos 2 x}{2}+\tan x\right]_{0}^{\frac{\pi}{4}}=(1)-\left(-\frac{1}{2}\right)=\frac{3}{2}$
(3) (a)

x	1	2	3	4	5
$f(x)$	0	1.39	3.3	$5 \cdot 55$	$8 \cdot 05$
w	1	4	2	4	1
$w \times f(x)$	0	$5 \cdot 56$	6.6	$22 \cdot 2$	8.05

$h=1$
$\sum w f(x)=42 \cdot 41 \Rightarrow \int_{1}^{5} x \log x d x \approx \frac{h}{3} \times 42 \cdot 41=14 \cdot 14(2 \mathrm{dp})$
(b) (i) $\frac{d}{d x}(\tan 2 x)=2 \sec ^{2} 2 x$
(ii) $\quad V=\pi \int_{0}^{\frac{\pi}{8}} \sec ^{2} 2 x d x=\frac{\pi}{2} \int_{0}^{\frac{\pi}{8}} 2 \sec ^{2} 2 x d x$

$$
\begin{aligned}
& =\frac{\pi}{2}[\tan 2 x]_{0}^{\frac{\pi}{8}}=\frac{\pi}{2} \times 1 \\
& =\frac{\pi}{2} \mathrm{cu}
\end{aligned}
$$

(c) (i)

Let $\alpha=-\frac{1}{2}$ and β be the x-coordinates of the points of intersection

$$
\begin{aligned}
& y=x+1=2 x^{2} \Rightarrow 2 x^{2}-x-1=0 \\
& \therefore \alpha+\beta=\frac{1}{2} \Rightarrow-\frac{1}{2}+\beta=\frac{1}{2} \Rightarrow \beta=1
\end{aligned}
$$

(ii) Area $=\int_{-\frac{1}{2}}^{1}\left(x+1-2 x^{2}\right) d x=\left[\frac{x^{2}}{2}+x-\frac{2}{3} x^{3}\right]_{-\frac{1}{2}}^{1}=1 \frac{1}{8}$
(4)
(a) $\int_{1}^{b} \frac{d x}{x}=1 \Rightarrow[\ln x]_{1}^{b}=1$

$$
\therefore \ln b=1 \Rightarrow b=e
$$

(b) $\quad V=\pi \int_{0}^{\frac{1}{2}} 4\left(1+e^{2 x}\right)^{2} d x=\pi \int_{0}^{\frac{1}{2}}\left(4+8 e^{2 x}+4 e^{4 x}\right) d x$

$$
\begin{aligned}
& =\pi\left[4 x+4 e^{2 x}+e^{4 x}\right]_{0}^{\frac{1}{2}} \\
& =\pi\left[2+4 e+e^{2}-(4+1)\right] \\
& =\pi\left[e^{2}+4 e-3\right] \mathrm{cu}
\end{aligned}
$$

(c) $y=\ln (1+\sin x)$

$$
\begin{aligned}
y^{\prime} & =\frac{\cos x}{1+\sin x} \\
y^{\prime \prime} & =\frac{(1+\sin x) \times(-\sin x)-\cos x \times \cos x}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}}=\frac{-\sin x-1}{(1+\sin x)^{2}} \\
& =-\frac{1+\sin x}{(1+\sin x)^{2}} \\
& =-\frac{1}{1+\sin x}
\end{aligned}
$$

(5) (a) (i) $90 \times \angle A O B=50$

$$
\therefore \angle A O B=\frac{5}{9}
$$

(ii) Let $\theta=\angle A O B$

$$
\begin{aligned}
\text { Shaded area } & =\frac{1}{2} r^{2}(\theta-\sin \theta)=\frac{1}{2} \times 90^{2}\left(\frac{5}{9}-\sin \frac{5}{9}\right) \\
& \approx 114 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) (i) $C D=400 x ; A B=600 x$
(ii) $A D C B=400+400 x$ $A D C B<\operatorname{arc} A B \Rightarrow 600 x>400+400 x$
$\therefore 200 x>400$
$\therefore x>2$
So when the angle is greater than 2 radians (ie greater than $114^{\circ} 35^{\prime}$), $\operatorname{arc} A B$ is the greater distance

