

Assessment 3

6 June 2007

Mathematics

General Instructions

- Reading Time -2 minutes
- Working Time - 1 hour 10 min
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this page
- All necessary working should be shown in every question

NAME: \qquad TEACHER:

Question	H3	H5	H6	H8	Total
$\mathbf{1}$	$/ 1$	19			$/ 10$
$\mathbf{2}$	13	12		$/ 5$	$/ 10$
$\mathbf{3}$		13		$/ 7$	$/ 10$
$\mathbf{4}$	12	14		$/ 4$	$/ 10$
$\mathbf{5}$			$/ 10$		$/ 10$
TOTAL	16	$/ 18$	$/ 10$	$/ 16$	$/ 50$

Question 1 (10 marks)

(a) Differentiate with respect to x
(i) $y=\left(e^{x}+4\right)$
(ii) $\quad f(x)=\ln \left(x^{2}+1\right)$
(b) Find
(i) $\int \sqrt{x} d x$
(ii) $\int(4 x+2)^{5} d x$
(c) Evaluate $\int_{-1}^{2}\left(5+e^{3 x}\right) d x$ correct to 1 decimal place.
(d) Use the change of base formula to evaluate $\log _{5} 9$ correct to 3 decimal places.

Question 2 (10 marks) Start a new page.
(a) Differentiate $\log _{e} \frac{x+7}{x-3}$
(b) Solve $2 \log _{e} x=\log _{e}(6-5 x)$.
(c) The line $y=6-x$ meets the curve $y=\frac{5}{x}$ at points A and B as shown in the diagram.

(i) Find the co-ordinates of A and B.
(ii) Find the shaded area between the curves.
(a) Evaluate $\int_{-2}^{1}\left(x^{3}-4\right) d x$.
(b) (i) Use the trapezoidal rule with 4 function values to find an approximation to the area under the curve $y=\ln x$ between $x=e$ and $x=4 e$.
(ii) Is the approximation found in (i) an overestimate or an underestimate of the exact area? Justify your answer.
(c) A bowl is designed by rotating the portion of the curve $y=x^{2}-1$ between $x=1$ and $x=3$ around the y-axis as illustrated in the diagram below. Find the volume of the solid formed.

Question 4 (10 marks) Start a new page.

(a) If $\log _{a} p=1.18$ and $\log _{a} q=1.54$ find the value of $\log _{a}(a p q)$
(b) (i) Differentiate $\sqrt{2 x^{2}+3}$ with respect to x.
(ii) Hence find $\int \frac{8 x}{\sqrt{2 x^{2}+3}} d x$.
(c) In the diagram the shaded region is bounded by the parabola $y=2-x^{2}$, the axes and the line $y=x-4$.

(i) Show that the co-ordinates of the point of intersection B are (2, -2$)$.
(ii) Write an expression for the shaded area. Do NOT find the area.

The function $f(x)=x e^{-2 x}+3$ has a first derivative $f^{\prime}(x)=e^{-2 x}-2 x e^{-2 x}$ and second derivative $f^{\prime \prime}(x)=4 x e^{-2 x}-4 e^{-2 x}$.
(a) Find the stationary point on $y=f(x)$.
(b) For what values of x is the function increasing?
(c) Show that the co-ordinates of the point of inflexion are $\left(1,3+\frac{1}{e^{2}}\right)$.
(d) Determine when the curve is concave up.
(e) Sketch $y=f(x)$ for $-\frac{1}{2} \leq x \leq 2$.
(f) What value does $f(x)$ approach as x gets very large?

End of paper

SOLUTIONS - 2007 MATHEMATICS Task 3- YR 12
Qua) $y=\left(e^{x}+4\right)^{7}$

$$
\begin{aligned}
& \frac{d y}{d x}=7 e^{x}\left(e^{x}+4\right)^{6} \\
& f^{\prime}(x)=\frac{2 x}{x^{2}+1}
\end{aligned}
$$

b) (1) $\int \sqrt{x} d x=\frac{2}{3} x^{3 / 2}+c$

$$
\begin{equation*}
=\frac{2}{3} \sqrt{x^{3}}+c \tag{1}
\end{equation*}
$$

(ii) $\int(4 x+2)^{5} d x=\frac{(4 x+2)^{6}}{24}+c$
c) $\int_{-1}^{2}\left(5+e^{3 x}\right) d x=\left[5 x+\frac{1}{3} e^{3 x}\right]_{-1}^{2}$

$$
\begin{aligned}
& =\left(10+\frac{e^{6}}{3}\right)-\left(-5+\frac{e^{-3}}{3}\right) \\
& =19.5
\end{aligned}
$$

$$
=149.5
$$

d) $\log _{5} 9=\frac{\log 9}{\log 5}=1.365$

Question 2
a)

$$
\begin{aligned}
\frac{d}{d x}\left(\log _{e} \frac{x+7}{x-3}\right) & =\frac{d}{d x}\left(\log _{e}(x+7)-\log _{e}(x-3)\right) \\
& =\frac{1}{x+7}-\frac{1}{x-3}
\end{aligned}
$$

b)

$$
\therefore x=1 \text { or }-6
$$

.
(ii) The curve is concave down
and the trapezia are under the curve at all times. \therefore This estimate underestimates the true area.
c)
c) $V=\pi \int x^{2} d y$

$$
x=1, y=0
$$

$$
=\pi \int_{0}^{p}(y+1) d y
$$

$$
x=3, y=8
$$

$$
=\pi\left[\frac{y^{2}}{2}+y\right]_{0}^{8}
$$

$$
y=x^{2}-1
$$

$$
x^{2}=y+1
$$

$$
=\pi\left[\frac{64}{2}+8-0\right]
$$

$$
=40 \pi \text { units }^{3}
$$

Question 4
a)

$$
\begin{aligned}
\log (a p q) & =\log _{a} a+\log _{a} p+\log _{a} q \\
& =1+1.18+1.54 \\
& =3.72
\end{aligned}
$$

b) (1)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}\left(2 x^{2}+3\right)^{-1 / 3} \cdot 4 x \\
& =\frac{2 x}{\sqrt{2 x^{2}+3}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int \frac{8 x}{\sqrt{2 x^{2}+3}} & =4 \cdot \int \frac{2 x}{\sqrt{2 x^{2}+3}} d x \\
& =4 \sqrt{2 x^{2}+3}+C
\end{aligned}
$$

$$
\begin{aligned}
& 2 \log _{e} x=\log _{e}(6-5 x) \\
& x^{2}=6-5 x \text { where } x>0 \text { and } \\
& x^{2}+5 x-6=0 \quad 6-5 x>0 \\
& (x+6)(x-1)=0
\end{aligned}
$$

Question 4 (cont)

\therefore B has coordinates $(2,-2)$
(ii) Area $=\int_{0}^{\sqrt{2}}\left(2-x^{2}\right) d x-\int_{\sqrt{2}}^{2}\left(2-x^{2}\right) d x-\int_{2}^{4}(x-4) d x$

$$
\text { Area }=\int_{0}^{\sqrt{2}}\left(2-x^{2}\right) d x+\left|\int_{\sqrt{2}}^{2}\left(2-x^{2}\right) d x\right|+\left|\int_{2}^{4}(x-4) d x\right|
$$

 or area $\Delta=\frac{1}{2} \times 2 \times 2$, \therefore Swill be negative for each
Question δ
a) Stat pt if $f^{\prime}(x)=0$
$\therefore e^{-2 x}(1-2 x)=0$$\quad\left\{\begin{array}{l}f(x)=x e^{-2 x}+3 \\ f^{\prime}(x)=e^{-2 x}-2 x e^{-2 x} \\ f^{\prime \prime}(x)=4 x e^{-2 x}-4 e^{-x}\end{array}\right.$

As $e^{-2 x}>0$ oral x, then $x=\frac{1}{2}$ is only 301^{13}

$$
\text { Then } y=3+\frac{1}{2 e}
$$

$$
\therefore \text { Stat pt at }\left(\frac{1}{2}, 3+\frac{1}{2 e}\right)
$$

b) Increasing if $f^{\prime}(x)>0$
$e^{-2 x}(1-2 x)>0$
$\therefore 1-2 x>0$ as $e^{-2 x}>0$
Note: The curve exists at $x=0$ and
$\therefore x<\frac{1}{2}$ \qquad so there is NoT an open circle at $(0,3)$
c) $f^{\prime \prime}(x)=0$ for pt of inflexion A curve may pass through an horizontal $4 e^{-2 x}(x-1)-0$ asymptote. It is only as becomes verylage
$\therefore x=1 \quad$ as $e^{-2 x}>0$
then $y=e^{-2}+3=3+\frac{1}{e^{2}}$
Check concavity

d) Concave up if $f^{\prime \prime}(x)>0$
ie $4 e^{-2 x}(x-1)>0$
$\therefore x>1$ since $4 e^{-2 x}>0$
f)

$$
\text { As } x \rightarrow \infty, e^{-2 x} \rightarrow 0
$$

c) When $x=0, f(x)=3$ $x=-\frac{1}{2} f(x)=3-\frac{e}{2} \doteqdot 1.64$ $x=1 / 2 f(x)=3+\frac{1}{2 e} \div 3.18$
$\therefore f(x) \rightarrow 3$
$x=1 \quad f(x)=3+\frac{1}{e^{2}} \doteqdot 3.14$
$x=2 \quad f(x)=3+\frac{2}{e^{4}} \doteqdot 3.097$

