

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Mathematics Assessment Task 3
 Term 2, 2009

Name: \qquad Mathematics Class: \qquad

Time Allowed: 60 minutes +2 minutes reading time

Available Marks: 60

Instructions:

- Questions are of equal value.
- Start each question on a new page.
- Put your name on the top of each page.
- Attempt all five questions.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Each question will be collected separately.
- If you do not attempt a question, submit a blank page with your name and the question number clearly displayed.

Question	1ab	1cdef	2a	2bc	3abc	3d	4a	4b	5a	5b	Total
H3	14										
H5											

a) Evaluate the expression $e^{5}+\log _{e} 50$ correct to 2 decimal places,
b) Find the value of $\log _{a}(b c)^{2}$ given that $\log _{a} b=2 \cdot 75$ and $\log _{a} c=0 \cdot 25$.
c) Each year a person's life seems only $\frac{9}{10}$ as long as the previous year from the second year of their life. What is the oldest a person could expect to feel, assuming they could live forever?
d) Show that the curve $y=e^{x^{2}}$ is concave up for all values of x.
e) Differentiate $y=\frac{e^{x}+1}{2 x}$ with respect to x .
f) Find $\int(1+7 x)^{6} d x$.

Question 2 (12 Marks) Start a new page

a) Consider the curve $y=\frac{1}{x^{2}}$ in the first quadrant.
i) Write an expression for x in terms of y for this function.
ii) Find the area in the first quadrant between $y=\frac{1}{x^{2}}$, the y axis and the lines

$$
y=4 \text { and } y=2 \text { (leaving your answer in surd form). }
$$

b) Use the trapezoidal rule with 4 trapezia to calculate an approximation for

$$
\int_{0}^{4} \frac{1}{x^{2}+1} d x
$$

c) Consider the function $y=e^{k x}$
i) Find the second derivative of this function.
ii) Find all possible values of k for which $y=e^{k x}$ satisfies the equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-35 y=0
$$

Question 3 (12 Marks) \quad Start a new page

a) Find $\int\left(3+e^{x}\right)^{2} d x$
b) Find $\int_{1}^{4} \sqrt{x} d x$
c) A river 40 metres wide is measured for depth every 10 metres directly across its width. These measurements, from bank to bank are given in the following table.

Distance from bank	0	10	20	30	40
Depth in metres	0	$12 \cdot 1$	$17 \cdot 2$	$6 \cdot 9$	2

i) Find an approximation for the cross-sectional area of the river, using Simpson's rule and 5 function values
d) A solid is generated when the region in the first quadrant enclosed between the curve $y=x^{2}$, the y axis and the line $y=4$ is rotated about the x axis.
i) draw a sketch of this information showing the region with shading.
ii) Find the volume of the solid formed by rotating this region (leaving your answer in terms of π.)

Question 4 (12 Marks) \quad Start a new page

a) A geometric series has its nth term given by $T_{n}=(x-2)^{n}$.
i. Write out the first 3 terms of this series without expansion.
ii. Find the range of values of x for which the series has a limiting sum.
iii. Find this sum in terms of x in its simplest form.
b) The diagram shows the graph of the function $y=e^{x}-2$

The curve $y=e^{x}-2$ cuts the x axis at A.
P is the point $(1, e-2)$ on the curve.
The tangent to the curve at P cuts the x axis at T
i. Find the x coordinate of the point A (in exact form).
ii. Find the equation of the tangent at P and hence the x coordinate of the point T .
iii. Find the area enclosed by the curve, the tangent at P and the x axis.

Question 5 (12 Marks) Start a new page

a) The diagram shows a sketch of the gradient function of the curve $y=f(x)$

It is known that this gradient function passes through the point $(1,-3)$
i) Show that $y=f^{\prime}(x)$ has equation $f^{\prime}(x)=3 x^{2}-6 x$
ii) Find a possible equation for this curve and sketch its graph.
b)Robyn invests $\$ 1200$ in an extra superannuation fund paying 4% pa compound interest.

At the beginning of the next year she deposits $\$ 600$ into this account which also earns 4% pa compound interest and continues to add $\$ 600$ to this account at the beginning of each year for a period of time (interest compounding annually at $4 \% \mathrm{pa}$).
i. What will be the value of Robyn's first 2 deposits when the first deposit has been invested for n years?
ii. Derive an expression for the total accumulated amount of all her deposits at the end of n years (expressed in simplest form).
iii. Robyn plans to withdraw all her funds when their total value reaches at least $\$ 25000$. How many deposits will she make in total including the first $\$ 1200$?

TERM 2, 2009 2UNIT (IAS KB)

Question 1
a)

$$
\begin{aligned}
& \text { a) } 150 \cdot 0225 \\
& \equiv 150 \cdot 02 \\
& \text { b) } \left.\begin{array}{l}
2 \log _{a}(-(-c) \\
= \\
=2\left(\log _{a} b+\log _{a} c\right) \\
=2(2.75+0.25) \\
=2 \times 3 \\
=
\end{array}\right) .
\end{aligned}
$$

c)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{1}{1-90} \\
& =\frac{1}{1 / 10} \\
& =10
\end{aligned}
$$

10 years old.
d)

$$
\begin{aligned}
y & =e^{x} \\
\frac{d y}{d x} & =2 x e^{x^{2}} \\
\frac{d^{2} y}{d x^{2}} & =2 x \cdot 2 x e^{x}+e^{x^{2}} \cdot 2
\end{aligned}
$$

Concave up $\frac{d^{2} y}{d x^{2}}>0$

$$
2 e^{x^{2}}>0 \text { for ant } x
$$

$$
2 x^{2}+1>0 \text { for all } x
$$

\therefore Curve concave up for all x
e)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2 x \cdot e^{x}-\left(e^{x}+1\right) 2}{(2 x)^{2}} \\
& =\frac{2 x e^{x}-2 e^{x}-2}{4 x^{2}}
\end{aligned}
$$

f)

$$
\begin{aligned}
& \frac{(1+7 x)^{7}}{7 \times 7}+c \\
= & \frac{(1+7 x)^{7}}{49}+c
\end{aligned}
$$

Question 2
a) i)

$$
\begin{aligned}
& y=x^{-2} \\
& y^{1 / 1}=x^{1} \\
& x=y^{-\frac{1}{2}}
\end{aligned}
$$

ii)

$$
\begin{aligned}
A & =\int_{2}^{4} y^{-\frac{1}{2}} d y \\
& =\left[2 y^{\frac{1}{2}}\right]_{2}^{4} \\
& =[2 \sqrt{y}]_{2}^{4} \\
& =2 \sqrt{4}-2 \sqrt{2} \\
& =4-2 \sqrt{2}
\end{aligned}
$$

area is $4-2 \sqrt{2}$ ont

Question. 2.
b)

$$
\begin{aligned}
& h=\frac{4-0}{4} \\
&=1 \\
& \hline \frac{x}{y} 0 \\
& \hline
\end{aligned}
$$

e)

$$
\begin{aligned}
& y=e^{k x} \\
& \frac{d y}{d x}=k e^{k x} \\
& \frac{d^{2} y}{d x^{2}}=k^{2} e^{-k x} \\
& \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-35 y=0 \\
& k^{2} e^{k x}+2 k e^{k x}-35 e^{k x}=0 \\
& \frac{e^{k x}\left(k^{2}+2 k-35\right)}{}=0 \\
& \left(e^{k x}>0\right)(k+7)(x-5)=0 \\
& k=-7,5
\end{aligned}
$$

Question three
a) $\int\left(3+e^{x}\right)^{2} d x$

$$
\begin{aligned}
& =\int 9+6 e^{x}+\left(e^{x}\right)^{2} d x \\
& =\int 9+6 e^{x}+e^{2 x} d x \\
& =9 x+6 e^{x}+\frac{1}{2} e^{2 x}+c
\end{aligned}
$$

b)

$$
\begin{aligned}
\int_{1}^{4} \sqrt{x} d x & =\int_{1}^{4} x^{\frac{1}{2}} d x \\
& =\left[\frac{2 x^{\frac{3}{2}}}{3}\right]_{1}^{4} \\
& =\frac{2}{3}[x \sqrt{x}]_{1}^{4} \\
& =\frac{2}{3}(8-1) \\
& =\frac{14}{3}
\end{aligned}
$$

c)

$$
\begin{aligned}
& h=10 \\
& =\frac{h}{3}\left\{\left(y_{1}+y_{5}\right)+2\left(y_{3}\right)+4=\left(y_{2}+y_{4}\right)\right\} \\
& =\frac{10}{3}\{(0+2)+2(17 \cdot 2)+4(12 \cdot 1+6 \cdot 9)\} \\
& =\frac{10}{3}\{2+34.4+76\} \\
& =374.6
\end{aligned}
$$

area io $374.6 \mathrm{~m}^{2}$

Question 3
d)

$$
\begin{aligned}
V & =\pi \int_{0}^{2}(4)^{2} d x-\int_{0}^{2}\left(x^{2}\right)^{2} c \\
& =\pi \int_{0}^{2} 16-x^{4} d x \\
& =\pi\left[16 x-\frac{1}{5} x^{5}\right]_{0}^{2} \\
& =\pi\left(\left(32-\frac{32}{5}\right)-(0-0)\right) \\
& =\frac{128 \pi}{5}
\end{aligned}
$$

Volume is $\frac{12811}{5}$ units ${ }^{3}$

Question four
a) $T_{n}=(x-2)^{n}$
i) $(x-2)^{\prime}+(x-2)^{2}+(x-2)^{3}+\cdots$.
ii)

$$
\begin{aligned}
r= & (x-2) \\
-1 & <(x-2)<1 \\
1 & <x<3
\end{aligned}
$$

iii)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{(x-2)}{1-(x-2)} \\
& =\frac{x-2}{3-x}
\end{aligned}
$$

Question 4
b)
(i)

$$
\begin{gathered}
y=0, y=e^{x}-2 \\
0=e^{x}-2 \\
e^{x}=2 \\
x=\log _{e} 2
\end{gathered}
$$

(ii)

$$
\begin{aligned}
y & =e^{x}-2 \\
d y & =e^{x} \\
\frac{d x}{d y} & =e \\
\frac{d y}{d x}-(e-2) & =e(x-1) \\
y-e+2 & =e x-e \\
y & =e x-2 \\
0 & =e x-2 . \\
e x & =2 \\
x & =\frac{2}{e} .
\end{aligned}
$$

$$
x=1, \frac{d y}{d x}=e
$$

$$
y=0
$$

(iii) $A=\int_{\log _{e} 2}^{1} e^{x}-2 d x-\int_{\frac{2}{e}}^{1} e x-2 d x$.

$$
\begin{aligned}
& =\left[e^{x}-2 x\right]_{\log _{e} 2} \\
& =\left((e-2)-\left(e^{\log _{e} 2}-2 \log _{e} 2\right)\right)-\left(\left(\frac{e}{2}-2\right)-\left(\frac{e}{2}\left(\frac{2}{e}\right)^{2}-\right.\right. \\
& =\left(e-2-\left(2-2 \log _{e} 2\right)\right)-\left(\frac{e}{2}-2-\left(\frac{2}{e}-\frac{4}{e}\right)\right) \\
& =e-4+2 \log _{e} 2-\frac{e}{2}+2-\frac{2}{e} \\
& =\frac{e}{2}-2+2 \log _{e} 2-\frac{2}{e} .
\end{aligned}
$$

Question Pure
a)

$$
\text { i) } \quad \begin{aligned}
y^{\prime} & =a x(x-2) \\
-3 & =a(-1) \\
a & =3 \\
y^{\prime} & =3 x(x-2) \\
y^{\prime} & =3 x^{2}-6 x
\end{aligned}
$$

ii) $\quad y=x^{3}-3 x^{2}+C$.

$$
=x^{2}(x-3)
$$

at $x=0 \leadsto \operatorname{Max} t p$
at $x=2>/$ Min $+p$.
roots at $x=0$ and $x=3$.
pout of inflection at $x=1$

5) 11 list deposit $\$ 1200\left(1+\frac{4}{100}\right)^{n}$
and deposit $\$ 600\left(1+\frac{4}{100}\right)^{n-1}$
first 2 deposits $\$ 1200(1.04)^{n}+600(1.04)^{n-1}$

1) 3 rd deposit amounts to $600(1.04)^{n-2}$

At deposit ounovuts to $6.00(1.04)^{n-3}$

$$
\left.\left.\begin{array}{rl}
\text { Total amount }= & 1200(1.04)^{n}+600(1.04)^{n-1}+600(1.04)^{n-2}+\cdots \\
& +\cdots+600(1.04)^{2}+600(1.04) \\
= & 1200(1.04)^{n}+600(1.04)\left(1+1.04+1.04^{2}+\cdots+1.04^{n}\right. \\
= & 1200(1.04)^{n}+600(1.04)\left\{\frac{1(1.04)^{n-1}-1}{1.04-1}\right\} \\
= & 1200(1.04)^{n}+600(1.04)\left(1.04^{n-1}-1\right) \\
0.04
\end{array}\right]=1200(1.04)^{n}+15000(1.04)\left(1.04^{n-1}-1\right)\right\}\left(1200(1.04)^{n}+15000(1.04)^{n}-15000(1.04) .\right.
$$

(iii)

$$
\begin{aligned}
& 25000=16200(1.04)^{n}-15600 \\
& 16200(1.04)^{n}=40600 \\
& 1.04^{n}=\frac{40600}{16200} \\
& 1.04^{n}=\frac{203}{81} \\
& n=1091.04\left(\frac{203}{81}\right) \\
&=23.425 \text { years }
\end{aligned}
$$

Robyn must make 24 deposits:

