ST IGNATIUS COLLEGE RIVERVIEW

ASSESSMENT TASK NUMBER 3

YEAR 12

2003

MATHEMATICS (2 Unit)

Time allowed: 50 minutes

Instructions to Candidates

- Attempt all questions

Question	Topics	Marks
1	Trigonometric Functions (part 1)	8
2	Trigonometric Functions (part 2)	8
3	Applications of Calculus to the Physical World (part 1)	8
4	Applications of Calculus to the Physical World (part 2)	8

- Show all necessary working. Marks may be deducted for missing or poorly arranged work.
- Board approved calculators may be used.
- Each question attempted must be returned in a separate answer sheet clearly marked Q 1, Q 2 etc
- Each answer sheet must have your name and the name of your mathematics teacher.
a

(Figure not to scale)
(O is the centre of the circle)
i The size of $\angle X O Y=\frac{5 \pi}{9}$ radians. Write down the size of $\angle X O Y$ in degrees.
ii Find the exact length of the minor arc $X Y$ if $O X=O Y=10 \mathrm{~cm}$.
iii Find the area of the shaded region correct to the nearest cm^{2}.
b
The diagram shows the graph of $\mathrm{y}=\sin x$ for $0 \leq x \leq 2 \pi$. Copy this diagram neatly onto your answer sheet.

NOT TO SCALE
i On the same co-ordinate axes, sketch the graph of $y=\cos 2 x$ for $0 \leq x \leq 2 \pi$.
ii Use your diagram to state the number of solutions in $0 \leq x \leq 2 \pi$ to the equation $\sin x=\cos 2 x$

C Draw a neat sketch of $f(x)=2 \cos (x)+1$ for $0 \leq x \leq 2 \pi$
a
Differentiate with respect to x :
i $\quad \tan \frac{x}{3}$.
ii $\quad(1+\sin x)^{3}$.
b
Evaluate $\int_{0}^{\frac{\pi}{8}} \sec ^{2} 2 x d x$

C Show that $\int_{0}^{\pi} \cos x d x=0$.
d i The graph of $y=\cos x$, for $0 \leq x \leq 2 \pi$ is shown below.

ii On the diagram the regions bounded by the curve $\mathrm{y}=\cos x$, the x axis, and the lines $x=0$ and $x=\pi$ have been shaded.

Calculate the total area of these shaded regions.

A particle moves in a straight line such that its displacement, $x \mathrm{~cm}$, after t seconds is given by: $x=t^{3}-6 t^{2}+9 t+4$.
i Where is the particle initially?
ii What is the average speed of the particle in the first second?
iii When does the particle first change direction?
b A particle moving with a constant acceleration of $4 \mathrm{~ms}^{-2}$ starts from rest. Find:
i the time taken for the particle to attain a velocity of $22 \mathrm{~ms}^{-1}$;
ii the distance travelled by the particle in this time.
a
The diameter of a tree (D cm), t years after the start of a particular growth period is given by $\mathrm{D}=60 \mathrm{e}^{\mathrm{kt}}$.
i Show that $\frac{\mathrm{dD}}{\mathrm{dt}}=\mathrm{kD}$ where k is a constant.
ii If $\mathrm{k}=0.15$, how long will it take for the diameter of the tree to measure 64 cm ?
(Answer to the nearest number of days.)
b
A pool is being drained and the number of litres of water, L, in the pool at time t minutes is given by the equation: $L=120(40-t)^{2}$.

At what rate is the water draining out of the pool when $t=6$ minutes?
c

The velocity-time graph of a particle starting from rest at the origin is shown in the diagram.

Copy this diagram onto your answer sheet. On this copied diagram, change the vertical axis to x and sketch the displacement-time graph of the particle.

