2004

HSC Course
Assessment Task 3

Mathematics

General Instructions

- Time allowed - 50 minutes
- Write using blue or black pen
- Board-approved calculators and mathaids may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Each question is to be answered on a separate answer page.

Topics:

- Trigononometric Functions
- Exponential and Logarithmic Functions

Total Marks - 34

- Attempt Questions 1 - 4
- Question 1-8 marks

Question 2 - 9 marks
Question 3-8 marks
Question 4-9 marks

Question 1 (8 marks) Use a SEPARATE answer page.
(a) Write down the exact value of 120° in radians.
(b) Find the exact value of $\cos \frac{\pi}{4}$.

1
and the angle $P O Q$ is $\frac{5 \pi}{6}$ radians. Find the exact area of the sector $P O Q$.
(e) Evaluate $\int_{0}^{\frac{\pi}{6}} 2 \sin 2 x d x$
(a) Differentiate $\frac{\sin x}{x}$.
(b) Find $\int \sec ^{2}(1+3 x) d x$.

1
(c) Find the equation of the tangent to the curve $y=1-2 \cos x$ at the point where $x=\frac{\pi}{2}$.
(d)
(i) Sketch $y=2 \cos \frac{x}{2}$, for $0 \leq x \leq 2 \pi$, showing all essential features and labelling the curve.
(ii) Hence clearly sketch $y=1+2 \cos \frac{x}{2}$ on the same set of axes, labelling 1 this curve also.
(a) Evaluate, correct to three significant figures:
(i) $e^{-1.9}$
(ii) $\quad \log _{e} 36$.

1
(b) Solve $2 \log _{5} 3=\log _{5} x-\log _{5} 9$.
(c) Find $\int \frac{1}{5-2 x} d x$. 1
(d) Differentiate $3 e^{x^{2}}$.
(e)
(i) Show that the point $(e+2,1)$ lies on the curve $y=\log _{e}(x-2)$.
(ii) Sketch the graph of $y=\log _{e}(x-2)$, showing clearly any asymptotes.
(a) A solid is formed by rotating the portion of the curve $y=e^{x}$ between $x=0$ and $x=2$ around the x-axis.

Find the volume of this solid. Leave the answer in exact form.
(b)
(i) Show that $\frac{d}{d x}\left(x e^{-x}\right)=(1-x) e^{-x}$.
(ii) Find the stationary point on the curve $y=x e^{-x}$.
(iii) Determine the nature of this stationary point.
(c)

The shaded region in the diagram is bounded by the curve $y=\frac{\sec ^{2} x}{\tan x+1}$, the x-axis, the y-axis, and the line $x=1$. Find the area of the shaded region.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

$$
\text { HSC MATHS } 2004-T 3
$$

Q1
(a) $120^{\circ}=\frac{2 \pi}{3}$
(b) $\quad \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
(c) $2 \cos x+\sqrt{3}=0 \quad 0 \leq x \leq 2 \pi$

$$
\cos x=-\frac{\sqrt{3}}{3} / 2
$$

$$
\begin{aligned}
& 8 x=\frac{\pi}{6}, \frac{\pi \pi}{6} \\
& x
\end{aligned}
$$

1 for our chutor
2 . loth :
(d)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} r^{2} \theta \\
& =\frac{15}{2 \times 3^{2} \frac{5 \pi}{2}} \\
& =\frac{15 \pi}{4} \mathrm{~cm}^{2}
\end{aligned}
$$

1

1 fo coracet witt units.
(e) $\int_{0}^{\pi / 2} 2 \sin 2 x d x=\left[-2 \cos 2 x \times \frac{1}{2}\right]_{0}^{\pi / 6}$

$$
\begin{array}{l|l}
=[-\cos 2 x]_{0}^{\pi / 6} & \text { 1 for corract pinintion } \\
=-\cos 5 / 3-(-\cos 0) & \text { (for corrat answer. } \\
=-1 / 2+1 & \\
=1 / 2 .
\end{array}
$$

Q2.
(a)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{v}{v}\right) & =\frac{v \frac{d x}{d x}-u \frac{d v}{d x}}{v^{2}} \\
\frac{d}{d x}\left(\frac{\sin x}{x}\right) & =\frac{x \cos x-\sin x \times 1}{x^{2}} \\
& =\frac{x \cos x-\sin x}{x^{2}}
\end{aligned}
$$

2 8- coveat ansuer
1 for comet taplisonn a/ rule excentoo l esror?

Q2 cont'd.
(b) $\quad \int \sec ^{2}(1-3 x) d x=-\frac{1}{3} \tan (1-3 x)+c$
(c)

$$
\begin{aligned}
& y=1-2 \cos x \\
& y^{\prime}=2 \sin x
\end{aligned}
$$

at $x=\frac{\pi}{2}, y=1-\cos \pi / 2=1$.

$$
\begin{gathered}
y^{\prime}=2 k \frac{\pi}{2}=2=m \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-1=2(x-\pi / 2) \\
y=2 x+\pi+1
\end{gathered}
$$

(d) $\quad y=2 \cos \frac{x}{2} \quad 0 \leqslant x \leqslant 2 \pi$
(i) $\operatorname{Pen} \dot{\operatorname{Oix}}=\frac{2 \pi}{1 / 2}=4 \pi$

Amplitude $=2$

(i) fer graph.

2 for corresten lodelted grapt corectly lodelled 1 for ngraph showis ecthe correct ampleture of corrall peñal.

1 for correct siagh, baied on rexult of (i)

Q3.
(a) (i) $e^{-1.9}=0.150 \quad$ (3.s.f.) 1
(ii) $\begin{aligned} \log _{e} 36 & =3.58 \\ 2 \log _{5} 3 & =\log _{5} x-\log _{5} 9\end{aligned}$

$$
\log _{5} 3^{2}=\log _{5} \frac{x}{9}
$$

$$
x=81
$$

2 for correct arinver

$$
q=\frac{x}{a}
$$

1 for correct
appluation of at least 1 lof law.
(c) $\quad \int \frac{1}{5-2 x} d x=-\frac{1}{2} \ln (5-2 x)+c$
(d). $\frac{d}{d x}\left(3 e^{x^{2}}\right)=3 e^{x^{2}} \times 2 x$

$$
=6 x e^{x^{2}}
$$

(e) (i)

$$
\begin{aligned}
y & =\log _{e}(x-2) \quad \text { whr }(e+2,1) \\
& =\log _{e}(e+2-2) \\
& =\log _{e} e \\
& =1
\end{aligned}
$$

$$
\therefore \quad(x+2,1) \text { lies on } y=\log _{e}(x-2)
$$

(ii)

1 for shouris correcthy i haged larve c clealy indicative asymptote

Q4.
(a).

$$
\begin{aligned}
V & =\pi \int_{0}^{b} y^{2} d x \\
& =\pi \int_{0}^{2}\left(e^{x}\right)^{2} d x \\
& =\pi \int_{0}^{2} e^{2 x} d x \\
& =\pi / 2\left[e^{2 x}\right]_{0}^{2} \\
& =\frac{\pi}{2}\left(e^{4}-e^{0}\right)=\frac{\pi}{2}\left(e^{4}-1\right)
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
y & =x e^{-z} \quad u v^{\prime}+v u^{\prime} \\
y^{\prime} & =x \times\left(-e^{-x}\right)+e^{-x} \times 1 \\
& =e^{-x}(1-x)
\end{aligned}
$$

(ii) Let $e^{-x}(1-x)=0$

$$
\begin{aligned}
x & =1 \quad\left(e^{-x} \neq 0\right) \\
y & =1 \times e^{-1} \\
& =1 / e \\
\therefore \text { Stat cionary Porn) } & =\left(1, \frac{1}{e}\right)
\end{aligned}
$$

(iii)

x	<1	1	>0
$e^{-x}(1-x)$	$(+1$	0	$(-)$

$$
\therefore\left(1, \frac{1}{e}\right) \text { is Maximum tumantpoil }
$$

Must ihow wokin's
(4)

$$
\begin{aligned}
A & =\int_{0}^{1} \frac{\sec ^{2} x}{\tan x+1} d x \\
& =[\ln (1+\tan x)]_{0}^{1} \\
& =(\ln (1+\tan 1))-\ln (1+\tan 0) \\
& =\ln (1+\tan 1)-0 \\
& =0.9389 . \cdots \\
& =0.94 \text { unit }^{2}(2 \operatorname{dec} p l)
\end{aligned}
$$

1 for correet volumeres epprohno
1 for correct primitive
for correct evaluchor
.

(ii) $\begin{array}{cccc}x & <1 & 1 & >0 \\ e^{-x}(1-x) & (+1 & 0 & (-) \\ \therefore\left(1, \frac{1}{e}\right) & \text { is MAXIMuM Tumany poil }\end{array}$
$\therefore(1)$

