

SYDNEYBOYS HIGH SCHOOL
 MoORE PARK, SURRY HILLS

2004

YEAR 12

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 3

Mathematics

General Instructions

- Working time -2 hours.
- Reading Time - 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 sections.
- Start each NEW section in a separate answer booklet.

Total Marks - 90

- Attempt Sections A - C
- All sections are of equal value.

Examiner: P. Parker

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks - 90
Attempt Questions 1-6
All questions are of EQUAL value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.
SECTION A (Use a SEPARATE writing booklet)
Question 1 (15 marks)
(a) Write down the value of $\cos 1 \cdot 5$, correct to 3 decimal places.
(b) Find $\int\left(3 x^{2}+1\right) d x$
(c) Sketch, showing intercepts with the coordinate axes,

$$
y=2 \cos x \text { for } 0 \leq x \leq 2 \pi
$$

(d)

If $f(x)=3 \cos 2 x$, find the exact values of
(i) $\quad f\left(\frac{\pi}{6}\right)$
(ii) $f^{\prime}\left(\frac{\pi}{6}\right)$
(iii) $f^{\prime \prime}\left(\frac{\pi}{6}\right)$
(iv) $\int_{0}^{\frac{\pi}{6}} f(x) d x$

The diagram below shows a sector of a circle with centre O and radius 4 cm and $\angle T O S=\frac{\pi}{6}$.

(i) Find the length of the arc $S T$.
(ii) Find the area of sector OST, leaving your answer in terms of π.
(iii) Hence, or otherwise, calculate the shaded area correct to 2
(a) Find the equation of the normal to the curve $y=4 \ln x$ at the point where $x=1$.
(b) \quad Simplify $e^{2 \ln 4}$.
(c) The displacement ($x \mathrm{~m}$) of an object (at time t secs) is given by the equation

$$
x=t^{3}-15 t^{2}+48 t-25
$$

(i) Find expressions for the object's velocity and acceleration.
(ii) Find its initial displacement, velocity and acceleration. $\mathbf{3}$
(iii) When is the object at rest? 2
(d) Using the Table of Integrals provided, find the exact value of $\mathbf{2}$

$$
\int_{0}^{\frac{\pi}{8}} \sec 2 x \tan 2 x d x
$$

(e) Which of the following areas is larger? Justify your answer

Area 1 is bounded by $y=1 \cdot 5+\sin x, x$ axis, $x=0$ and $x=\pi$.

Area 2 is bounded by $y=1 \cdot 5+x^{2}, x$ axis, $x=0$ and $x=\pi$.

SECTION B (Use a SEPARATE writing booklet)

Question 3 (15 marks)

(a)

Find $\frac{d y}{d x}$ given
(i) $y=e^{-x} \tan x$
(ii) $y=\ln \left(x^{4}\right)+(\ln x)^{4}$
(iii) $y=\frac{x^{2}}{\ln x}$
(b) The diagram below shows the graph of $y=e^{x / 2}$, together with a tangent line $A P$.
B is the point $(3,0)$ and P is the point $\left(3, e^{3 / 2}\right)$

(i) Find the equation of the tangent $A P$.
(ii) Show that A has coordinates $(1,0)$.
(iii) Hence, or otherwise, find the shaded area in terms of e.
(c) Find $\int\left(\frac{e}{x}+\frac{x}{e}\right) d x$

2
(d)

Differentiate $\ln \left(e^{2} x^{2}\right)$
(a) The height of the tide at Sunset Beach can be modelled by the equation

$$
H=4+2 \cos \frac{\pi t}{6}, t>0
$$

where H is the height of the tide in metres after time t hours.
(i) Find the rate of change of height of the tide after 10 hours.
(ii) State whether the tide was an incoming or outgoing tide after 10 hours (give reasons).
(b) "Whilst the price of houses continues to increase, recent moves by the State Government aimed at reducing the price of houses seem to be taking effect."

Given that P is the price of houses in Australian dollars, what does the above statement say about:
(i) $\frac{d P}{d t}$?
(ii) $\frac{d^{2} P}{d t^{2}}$?
(c) The rate of decay of a radioactive element is proportional to the mass M of the radioactive element present. The process is described by the differential equation

$$
\frac{d M}{d t}=-k M, \text { where } k>0
$$

(i) Show that $M=M_{0} e^{-k t}$ satisfies this differential equation where M_{0} is a constant.
(ii) Fifty percent of the original mass of the radioactive element Strontium 90 remains after 28 years. Show that $k \cong 0 \cdot 02476$.
(iii) How long will it take for Strontium 90 to decay to 1% of its original mass?
(d) The function $f(x)=x^{-e} e^{x}$, where $x>0$
(i) Show that $f^{\prime}(x)=e^{x} x^{-(e+1)}(x-e)$.
(ii) Classify the turning point at $x=e$. Justify your answer.

SECTION C (Use a SEPARATE writing booklet)

Question 5 (15 marks)

(a) The velocity of a particle traveling in a straight line is given by

$$
v=e^{3 t}-4 e^{t} \mathrm{~m} / \mathrm{s}
$$

where t is in seconds and $t \geq 0$.
(i) Find the initial velocity and acceleration.
(ii) Find the value of t when the particle is stationary. Give your answer in the form $\ln k$, where k is a constant.
(iii) If initially the particle is at $x=0$, find an expression for the position x in terms of t.
(iv) Show that at $t=\ln 4$ seconds the particle is 9 metres to the right of the origin.
(v) Find the distance travelled by the particle in the first $\ln 4$ seconds
(b)

In the diagram below $u(x)=R-1+e^{x}$ and $v(x)=R+1-e^{x}$

[Note: Diagram is not drawn to scale, $R>1$]
(i) Show that A, the area between the curves $u(x)$ and $v(x)$ where $0 \leq x \leq \log _{e} 2$ is given by

$$
A=2\left(1-\log _{e} 2\right)
$$

(ii) A solid is formed by rotating the area between the curves $u(x)$ and $v(x)$ where $0 \leq x \leq \log _{e} 2$, about the x axis.
Show that the volume of the solid generated is $2 \pi R A$ where A is the area between the curves.
(a)

Evaluate

$$
\int_{-1}^{1}\left(2 x-\frac{1}{x-2}\right) d x
$$

Express your answer in the form $\ln k$, where k is a real constant.
(b) (i) If $f(x)=e^{3 x} \sin 2 x$ show that $f^{\prime}(x)=0$ when $\tan 2 x=-\frac{2}{3}$

The diagram below shows the graph of $f(x)=e^{3 x} \sin 2 x$ for $x \geq 0$.
This graph intersects the x axis at the points B and C. The point A is a local maximum.

(ii) (α) Show that the x coordinates of B and C are $\frac{\pi}{2}$ and π respectively.
(β) Find the x coordinate of A, correct to 2 decimal places.
(iii) (α) If $g(x)=\frac{1}{13}\left(3 e^{3 x} \sin 2 x-2 e^{3 x} \cos 2 x\right)$ show that $g^{\prime}(x)=e^{3 x} \sin 2 x$
(β) Hence or otherwise, find the area between the graph of $f(x)=e^{3 x} \sin 2 x$ and the x axis from O to B.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

SYDNEYBOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2004
HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 3

Mathematics

Sample Solutions

SECTION	MARKER
A	Mr Choy
B	Mr Gainford
\mathbf{C}	Mr Fuller

question (i).
(a) Lo $1.5^{c}=0.071[i]$
(b)

$$
\left.\begin{aligned}
& \int\left(3 x^{2}+1\right) d x \\
= & x^{3}+x+c
\end{aligned} \quad[1] \right\rvert\,
$$

(c)

$$
y=24-x, 0 \leqslant x \leqslant 2 \pi
$$

(d)

$$
\text { (d) } \quad \begin{aligned}
f(x) & =3 \cos 2 x, \\
\text { (i) } f\left(\frac{\pi}{6}\right) & =3 \cos \frac{\pi}{3}[2] \\
& =\frac{3}{2}
\end{aligned}
$$

(8) (11)

$$
\begin{aligned}
f^{\prime}\left(\frac{\pi}{6}\right) & =-6 \sin \frac{\pi}{3} \\
& =-3 \sqrt{3} .[2]
\end{aligned}
$$

(iv)
(iii)

$$
\text { ii) } \begin{aligned}
f^{\prime \prime}\left(\frac{\pi}{6}\right) & =-12 \cos \frac{\pi}{3}[2] \\
& =-6 \\
)_{0}^{\pi / 6} f(x) d x & =3 \int \cos 2 x d x \\
=\left[\frac{3 \sin 2 x}{2}\right]_{0}^{\pi / 6} & =\frac{3 \sqrt{3}}{4}[2]
\end{aligned}
$$

$(3)^{\frac{\pi}{6}}{ }^{4}$
(i)
(iii) Area og mino $\frac{4 \pi}{3}$ [1]
segiment.

$$
=\frac{4 \pi}{3}-4=4\left(\frac{\pi}{3}-1\right)
$$

$$
=0.19(2 d f) \quad[1]
$$

Question (2).
(a) $y=4 \ln x$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{4}{x},\left.\frac{d y}{d x}\right|_{x=1}=4 \\
& x=1, y=0(1,0) \quad m^{i}=-\frac{1}{4}
\end{aligned}
$$

$$
y-0=-\frac{1}{4}(x-1)
$$

$$
4 y=-x+1 \quad[2] .
$$

$$
\therefore \quad x+4 y-1=0 .
$$

(b) $2 \ln 4 \quad \ln 16 \quad y=-\frac{x}{4}+\frac{1}{4}$
(b) $e^{2 \ln 4}=e^{\ln 16}=16 \cdot[1]$
(c).
(i)

$$
x=t^{3}-15 t^{2}+48 t-25
$$

$$
\frac{d x}{d t}=3 t^{2}-30 t+48
$$

$$
[2]
$$

$$
\frac{d^{2} x}{d t^{2}}=6 t-30
$$

(ii) When $t=0, x=-25$
[3] $V=48,{ }^{a}=-30^{\circ}$
(iii) $\quad r=0$ then $\frac{d x}{d t}=0$

$$
\begin{aligned}
& 3\left(t^{2}-10 t+16\right)=0 \\
& (t-8)(t-2)=0 \\
& \Longrightarrow t=2,8 . \quad[2] .
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
& \int_{0}^{\pi / 8} \sec 2 x \tan 2 x d x \\
= & \frac{1}{2}[\sec 2 x]^{\pi / 8} \quad[2] \\
= & \frac{1}{2}\left(\sec \frac{\pi}{4}-\sec 0\right)^{0}=\frac{\sqrt{2}-1}{2}
\end{aligned}
$$

(e)

Ataa in boundad by $y=1.5+x^{2}$

SELTIONB
tivestion 3
(a) (i)

$$
\begin{aligned}
& \text { (i) } y=e^{-x} \tan x \\
& \frac{d y}{d x}=e^{-x} \sec ^{2} x+\tan x\left(-e^{-x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-x}\left(\sec ^{2} x-\tan x\right) \\
y & =\ln \left(x^{4}\right)+(\ln x)^{4} \\
& =4 \ln x+(\ln x)^{4}
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{4}{x}+4 \cdot(\ln x)^{3} \cdot \frac{1}{x}
$$

$$
\begin{equation*}
=\frac{4}{x}\left(1+(\ln x)^{3}\right) \tag{2}
\end{equation*}
$$

(iii) $y=\frac{x^{2}}{\ln x}$

$$
\begin{aligned}
\frac{d y}{d_{x}} & =\frac{\ln x \cdot 2 k-x^{2} \cdot \frac{1}{x}}{(\ln x)^{2}} \\
& =\frac{2 x \ln x-x}{(\ln x)^{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (i) } y=e^{x / 2} \\
& y^{\prime}=\frac{1}{2} e^{x / 2} \\
& \therefore m(3)=\frac{1}{2} e^{-3 / 2}
\end{aligned}
$$

\therefore Targeut 's

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\begin{aligned}
& y-e^{3 / 2}=\frac{1}{2} e^{3 / 2}(x-3) \\
& 2 y-2 e^{3 / 2}=x e^{3 / 2}-3 e^{3 / 2} \\
& \therefore x e^{3 / 2}-2 y-e^{3 / 2}=0 \\
& \text { or } \quad y=\frac{1}{2} e^{3 / 2}(x-1)
\end{aligned}
$$

(ii) Whem $x=4, y=0$

$$
\therefore \operatorname{Ais}(1,0) \quad[1]
$$

(iii)

$$
\begin{aligned}
\text { Area } & =\int_{0}^{3} e^{x / 2} d x-\triangle A B P \\
& =\left[2 e^{x / 2}\right]_{0}^{3}-\frac{1}{2} \times 2 x e^{3 / 2} \\
& =2 e^{3 / 2}-2-e^{3 / 2} \\
& =e^{3 / 2}-2 \text { inits }
\end{aligned}
$$

(c) $\int\left(\frac{e}{x}+\frac{x}{e}\right) d x$

$$
=e \ln x+\frac{x^{2}}{2 e}+C[2]
$$

(d)

$$
\text { d) } \begin{align*}
& \frac{d}{d x} \ln \left(e^{2} x^{2}\right) \\
= & \frac{d}{d x}\left[\ln e^{2}+2 \ln x\right] \\
= & \frac{2}{x} \tag{2}
\end{align*}
$$

Question 4
(a) $H=4+2 \cos \frac{\pi t}{t}, t>0$
(1)

$$
\begin{aligned}
\frac{d H}{d t} & =0+\left(-2 \sin \frac{\pi t}{6}\right) \times \frac{\pi}{6} \\
& =-\frac{\pi}{3} \cdot \sin \frac{\pi t}{6}
\end{aligned}
$$

When $t=10$

$$
\begin{aligned}
\frac{d H}{d t} & =-\frac{\pi}{3} \sin \frac{10 \pi}{6} \\
& =-\frac{\pi}{3}\left(-\frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{3} \pi}{6}=\frac{\pi}{2 \sqrt{3}}
\end{aligned}
$$

\therefore Ruto of chage is $\frac{\pi}{2 \sqrt{3}} \mathrm{~m} / \mathrm{ur}$

$$
[\fallingdotseq 0.9069]
$$

(ii) Inconning, becceuse rate is positive, 'idiakng tride nisig.
(b) (1) $\frac{d P}{d t}>O[1]$ (II) $\frac{d^{2} P}{d t^{2}}<O[1]$
(c) (1) Given $\frac{d M}{d t}=-k M \quad k>0$

Consider $M=m_{0} e^{-k t}$

$$
\begin{aligned}
\frac{d m}{d t} & =m_{0}\left(-k e^{-k t}\right) \\
& =-k\left(m_{0} e^{-k t}\right) \\
& =-k m \text { as regld }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (11) } \frac{1}{2} m_{0}=m_{0} e^{-k \times 28} \\
& \therefore \ln \frac{1}{2}=-28 k
\end{aligned}
$$

$$
\begin{align*}
\therefore k & =\frac{l_{11} 1 / 2}{-28} \\
& =0.024755 \ldots \\
& \doteq 0.02476 \tag{2}
\end{align*}
$$

(iii)

$$
\begin{aligned}
& \frac{M_{0}}{100}=m_{0} e^{-k t} \\
& \ln _{n} \frac{1}{100}=-k t \\
& t=\frac{\ln \frac{1}{100}}{-k} \\
&=\frac{\ln 100}{k} \\
&=186.03 \\
& \neq 186 \mathrm{yrs}^{2} 10 \text { dueg: }
\end{aligned}
$$

(d) $f(x)=x^{-e} e^{x}, x>0$
(D) $\begin{aligned} f^{\prime}(x) & =x^{-e} \cdot e^{x}+e^{x} \cdot\left(-e x^{-e-i}\right. \\ x & \left.-e^{-(e+i)}\right)\end{aligned}$

$$
=e^{x}\left(x^{-e}-e x^{-(e+1)}\right)
$$

$$
=e^{x} x^{-(e+1)}(x-e)
$$

(in)

$$
\begin{aligned}
f^{\prime}\left(e^{+}\right) & =(t)(t)(-) \\
& <0 \\
f^{\prime}\left(e^{t}\right) & =(t)(t)(t) \\
& >0
\end{aligned}
$$

\therefore TumnogPrenit is
a Reladire Mirminm.

$$
\begin{aligned}
& \text { SECTION } \\
& \text { Question } 5 \\
& \begin{aligned}
\text { (a) } r=e^{3 t}-4 e^{t}
\end{aligned} \\
& \begin{aligned}
\text { (i) initial veloaty } & =e^{3(0)}-4 e^{(0)} \\
& =-3 \mathrm{~m} / \mathrm{s} \\
& =3 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
& \begin{aligned}
& a=\frac{d v}{d t} \\
&= 3 e^{3 t}-4 e^{t}
\end{aligned} \\
& \begin{aligned}
\text { initial acceleration } & =3 e^{3(0)}-4 e^{(0)} \\
& =3-4 \\
& =-1 \mathrm{~m} / \mathrm{s}^{2} \\
& =1 \mathrm{~m} / \mathrm{s}^{2} \text { the left a the lett. (1) }
\end{aligned}
\end{aligned}
$$

(ii) particle is stationary when $r=0$.

$$
\begin{aligned}
& 0=e^{3 t}-4 e^{t} \\
& e^{3 t}=4 e^{t} \\
& e^{2 t}=4 \quad \text { (take las of both sides) }
\end{aligned}
$$

$$
\begin{aligned}
2 t & =\ln 4 \\
t & =\frac{1}{2} \ln 4 \\
t & =\ln 4^{\frac{1}{2}}
\end{aligned}
$$

$$
t=\ln 2 \text { seconds }
$$

(iii)

$$
\begin{array}{rl}
r= & d x=e^{3 t}-4 e^{t} \\
d t & x\left(e^{3 t}-4 e^{t}\right) d t \\
x & =\frac{1}{3} e^{3 t}-4 e^{t}+c \quad w h e n t=0 \\
0 & =\frac{1}{3} e^{3(0)}-4 e^{(0)}+c \\
0 & =\frac{1}{3}-4+c \\
c & =\frac{11}{3} \\
\therefore x & =\frac{1}{3} e^{3 t}-4 e^{t}+\frac{11}{3} t 3^{3} 3
\end{array}
$$

(iv) when $t=\ln 4$

$$
\begin{aligned}
& x=\frac{1}{3} e^{3(\ln 4)}-4 e^{(\ln 4)}+\frac{11}{3} \\
& x=\frac{1}{3} e^{\ln 4^{3}}-4 e^{\ln 4}+\frac{11}{3} \\
& x=\frac{1}{3} 64-4 \cdot 4+\frac{11}{3}
\end{aligned}
$$

$x=9$. metres to the right of the origin
(v) Find displacement after $t=\ln 2$ seconds

$$
\begin{aligned}
& x=\frac{1}{3} e^{3(\ln 2)}-4 e^{(\ln 2)}+\frac{11}{3} \\
& x=\frac{1}{3} e^{\ln 2^{3}}-4 e^{\ln 2}+\frac{11}{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{3} \cdot 8-4 \cdot 2+\frac{11}{3} \\
& x=-\frac{5}{3} \mathrm{~m} \\
& x=\frac{5}{3} \mathrm{~m} \text { to the left of the org h. }
\end{aligned}
$$

\therefore distance travelled in the first $\ln 4$ seconds

$$
\begin{align*}
& =\frac{5}{3}+\left(9-\frac{5}{3}\right) \\
& =\frac{37}{3} \mathrm{~m} \\
& =12 \frac{1}{3} \mathrm{~m} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { (b) } \quad u(x)=R-1+e^{x} \\
& r(x)=R+1-e^{x} \\
& \text { (i) } A=\int_{0}^{\ln 2}[n(x)-r(x)] d x \\
& A=\int_{0}^{\ln 2}\left(R-1+e^{x}-\left(R+1-e^{x}\right)\right) d x \\
& A=\int_{0}^{\ln 2}\left(-2+2 e^{x}\right) d x \\
& A=2 \int_{0}^{\ln 2}\left(e^{x}-1\right) d x \\
& A=2\left[e^{x}-x\right]_{0}^{\ln 2} \\
& A=2\left[\left(e^{\ln 2}-\ln 2\right)-\left(e^{0}\right.\right. \\
& A=2[2)] \\
& A=2\left(1-\log _{e} 2\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { (ii) } V=\pi \int_{0}^{\ln 2}\left(\left(R-1+e^{x}\right)^{2}-\left(R+1-e^{x}\right)^{2}\right) d x \\
& =\pi \int_{0}^{\ln 2}\left(\left(R-1+e^{x}\right)\left(R-1+e^{x}\right)-\left(R+1-e^{x}\right)\left(R+1-e^{x}\right)\right) d x \\
& =\pi_{0}^{\ln 2}\left(R^{2}-R+R e^{x}-R+1-e^{x}+R e^{x}-e^{x}+e^{2 x}\right. \\
& \left.\quad-\left(R^{2}+R-R e^{x}+R+1-e^{x}-R e^{x}-e^{x}+e^{x}\right)\right) d x \\
& =\pi \int_{0}^{\ln 2}\left(-4 R+4 R e^{x}\right) d x \\
& =4 \pi R \int_{0}^{\ln 2}\left(e^{x}-1\right) d x
\end{aligned}
$$

$$
=2 \pi R \cdot 2 \int_{0}^{\ln 2}\left(e^{x}-1\right) d x
$$

Section C

Question 6

(a) $\int_{-1}^{1}\left(2 x-\frac{1}{x-2}\right) d x$

$$
\begin{aligned}
& =\left[x^{2}-\ln |x-2|\right]_{-1}^{1} \\
& =\left(1^{2}-\ln |-1|\right)-\left((-1)^{2}-\ln |-1-2|\right) \\
& =1-0-(1-\ln 3) \\
& =\ln 3
\end{aligned}
$$

NB $\ln x$ is ONLY defined for $x>0$

ALTERNATIVELY using point symmetry about $x=2$. Draw a diagram!

$$
\begin{aligned}
\int_{-1}^{1}\left(2 x-\frac{1}{x-2}\right) d x & =\int_{-1}^{1} 2 x d x-\int_{-1}^{1} \frac{d x}{x-2} \\
& =\left[x^{2}\right]_{-1}^{1}+\int_{3}^{5} \frac{d x}{x-2} \\
& =0+[\ln (x-2)]_{3}^{5} \\
& =\ln 3-\ln 1 \\
& =\ln 3
\end{aligned}
$$

NB

$-\int_{-1}^{1} \frac{d x}{x-2}=+\int_{3}^{5} \frac{d x}{x-2}$
(b) (i)

$$
\begin{aligned}
& f(x)=e^{3 x} \sin 2 x \\
& f^{\prime}(x)=e^{3 x} \cdot 2 \cos 2 x+3 e^{3 x} \cdot \sin 2 x \\
& f^{\prime}(x)=2 e^{3 x} \cos 2 x+3 e^{3 x} \sin 2 x
\end{aligned}
$$

at $f^{\prime}(x)=0$

$$
\begin{array}{r}
2 e^{3 x} \cos 2 x+3 e^{3 x} \sin 2 x=0 \\
e^{3 x}(2 \cos 2 x+3 \sin 2 x)=0 \\
2 \cos 2 x+3 \sin 2 x=0 \\
3 \sin 2 x=-2 \cos 2 x \\
3 \sin 2 x=-2 \\
\cos 2 x \\
3 \tan 2 x=-2 \\
\tan 2 x=-\frac{2}{3}
\end{array}
$$

$\therefore f^{\prime}(x)=0$ when $\tan 2 x=-\frac{2}{3}$.
(2)
(ii) $(2) \operatorname{let} f(x)=0$

$$
\begin{array}{r}
e^{3 x} \sin 2 x=0 \\
e^{3 x} \neq 0 \quad \sin 2 x=0 \\
2 x=0, \pi, 2 \pi, \cdots \\
x=0, \frac{\pi}{2}, \frac{3 \pi}{2}, \cdots \\
\therefore B=\frac{\pi}{2} \text { and } C=\pi \tag{2}
\end{array}
$$

(B) from (i) $f^{\prime}(x)=0$ when $\tan 2 x=-\frac{2}{3}$
aoute onyk

$$
\begin{aligned}
\tan \alpha & =\frac{2}{3} \\
\alpha & =0.588
\end{aligned}
$$

$$
\begin{aligned}
& 2 x=\pi-\alpha, 2 \pi-\alpha \\
& x=\frac{\pi-\alpha}{2}, \frac{2 \pi-\alpha}{2},
\end{aligned}
$$

$x=1.28$ the x-coordinate of A, correct to places.
(iii)

$$
\begin{align*}
(\alpha) g(x) & =\frac{1}{13}\left(3 e^{3 x} \sin 2 x-2 e^{3 x} \cos 2 x\right) \\
g^{\prime}(x) & =\frac{1}{13}\left(3 e^{3 x} \cdot 2 \cos 2 x+9 e^{3 x} \cdot \sin 2 x-\left(2 e^{3 x} \cdot(-2 \sin 2 x)+6 e^{3 x} \cdot \cos 2 x\right.\right. \\
& =\frac{1}{13}\left(6 e^{3 x} \cos 2 x+9 e^{3 x} \sin 2 x+4 e^{3 x} \sin 2 x-6 e^{3 x} \cos 2 x\right. \\
& =\frac{1}{13}\left(13 e^{3 x} \sin 2 x\right) \\
& =e^{3 x} \sin 2 x \tag{3}
\end{align*}
$$

(B)

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{2}} e^{3 x} \sin 2 x d x \\
& =\frac{1}{13}\left[3 e^{3 x} \sin 2 x-2 e^{3 x} \cos 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{13}\left[3 e^{\frac{3 \pi}{2}} \sin 2\left(\frac{\pi}{2}\right)-2 e^{\frac{3 \pi}{2} \cos 2\left(\frac{\pi}{2}\right)}-\left(3 e^{3(0)} \sin 2(0)-2 e^{3(0)} 2(c o s\right.\right. \\
& =\frac{1}{13}\left[3 e^{\frac{3 \pi}{2}} \sin \pi-2 e^{\frac{3 \pi}{2}} \cos \pi-(3 e \sin 0-2 e \cos 0)\right] \\
& =\frac{1}{13}\left[3 e^{\frac{3 \pi}{2}}(0)-2 e^{\frac{3 \pi}{2}}(-1)-(3(1)(0)-2(1)(1))\right] \\
& =\frac{1}{13}\left(2 e^{\frac{3 \pi}{2}}+2\right) \\
& \frac{2}{13}\left(e^{\frac{3 \pi}{2}}+1\right)
\end{aligned}
$$

