

JUNE 2005

TASK #3

YEAR 12

Mathematics

General Instructions

- Reading time 5 minutes.
- Working time 2 Hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or badly arranged work.
- Start each **NEW** section in a separate answer booklet.

Total Marks - 100 Marks

- Attempt Questions 1 6
- All questions are NOT of equal value.

Examiner: P. Bigelow

Total marks – 100 Attempt Questions 1 - 6 All questions are NOT of equal value

Answer each SECTION in a SEPARATE writing booklet.

		Section A	Marks
Questio	on 1 (15	marks)	
(a)		Convert 150° to radians	1
(b)		$A \xrightarrow{40^{\circ}} O$	2
		OAB is a sector of a circle, with radius 16 cm.	
		Write down the area of the sector <i>OAB</i> , correct to the nearest square centimetre.	
(c)		Write down the value of the following, correct to 2 decimal places.	
	(i)	$\frac{1}{\sqrt{e}}$	1
	(ii)	$\cos 3$	1
(d)	(i) (ii)	Write down the derivatives of the following e^{-4x} $tan\left(\frac{x}{2}\right)$	1
(e)		Thirty cards are numbered from 1 to 30.	
	(i)	If one card is selected at random what is the probability that the card has a 4 on it?	1
	(ii)	If two cards are chosen at random, what is the probability that at least one of the cards has a 4 on it?	2
(f)		Find $f(2)$ if $f'(x) = 2x + 3$ and $f(1) = 6$	2

In the diagram, ACD is a triangle where AB = 2 cm, BC = 4 cm, CD = 9 cm and $\angle CDE = 30^{\circ}$. Also BE is parallel to CD.

(i)	Find the size of $\angle B$	ED.	L
-----	-----------------------------	-----	---

(ii) Find the length of *BE*. Give reasons for your answer. 2

Question 2 (17 marks)

(a)		Differentiate the following	
	(i)	$2x \ln x$	2
	(ii)	$\frac{\cos x}{x}$	2
(b)		Find	
	(i)	$\int_{-1}^{4} \frac{dx}{\sqrt{x^3}}$	2
	(ii)	$\int \frac{x^3 + x}{x^2} dx$	2

(iii)
$$\int \left(e^x + 1\right)^2 dx$$
 2

Question 2 continues over the page

Question 2 continued

(d)

(i)

(c) A farmer made the following statement: "In 1998 the price of wheat started to fall and it reached its lowest levels in mid 2002. Then from mid 2002, the price began a continual rise and is now, in 2005, at an all time high." If the curve representing the price of wheat, P, is differentiable, what does the above statement imply about: (i) $\frac{dP}{dt}$ between 1998 and 2005 (ii) $\frac{d^2P}{dt^2}$ at mid 2002?

Sketch $y = 3\sin 2x$ for $0 \le x \le 2\pi$

(ii) Find
$$\int_{0}^{\frac{\pi}{4}} 3\sin 2x \, dx$$
 2

2

1

2

End of Section A

Question 3 (17 marks)

(a) The graphs of y = x - 4 and $y = -x^2 + 5x - 4$ intersect at the points *A* and *B*, as shown in the diagram below.

Marks

Question 3 continued

(d)

The diagram shows $\triangle ABC$ with *D* lying on *AB* and *E* lying on *AC*. The lines *AF*, *DE* and *BC* are parallel and $\angle AED = \angle BED$.

(i)	Show that $\triangle BEC$ is isosceles.	2
(ii)	State the reason why $AD : DB = AE : EC$.	1
(iii)	Show that $AD: DB = AE: EB$	1

Question 4 (16 marks)

(a)		The part of the curve $y = \frac{1}{\sqrt{2x+1}}$ between $x = 0$ and $x = 1$ is	3
		rotated about the x axis.	
		Find the volume of the solid obtained	
(b)		Five marbles are numbered 1, 2, 3, 4 and 5 and placed in bag. Two marbles are taken out in succession, the first marble not being replaced before the second is withdrawn.	
	(i)	Find the probability that	
		(α) the 4 is selected.	1
		(β) the 3 is NOT selected.	1
		(γ) the 1 is the second marble chosen.	1
	(ii)	If the first marble is replaced before the second is selected, find the probability that at least one 2 is drawn.	2

Question 4 continued

(c) (i) Differentiate
$$y = \ln(\cos x)$$
 2

(ii) Hence find
$$\int \tan x \, dx$$
 1

(d) Find
$$\int_{0}^{\frac{\pi}{6}} \sec^2 2x \, dx$$
 2

(e) For a > 0, it is given that

$$\int_{1}^{4} \frac{4x}{4+x^2} \, dx = \ln a$$

3

By evaluating the integral, write down the value of a.

End of Section B

Section C (Use a SEPARATE writing booklet)

Questio	Question 5 (16 marks) M		
(a)		Find the second derivative of $x \sin x$.	2
(b)		Find $\int_0^1 \frac{e^x}{1+e^x} dx$	2
(c)		A continuous curve $y = f(x)$ has the following properties over	
		the interval $a \le x \le b$: f(x) > 0 $f'(x) > 0$ $f''(x) > 0$	
	(i)	Sketch a curve satisfying these properties.	2
	(ii)	State the least value of $f(x)$ over this interval.	1
(d)		At every point on a curve $\frac{d^2 y}{dx^2} = 2x$.	4
		The point $(3,6)$ lies on the curve and its tangent at this point is	
		inclined at 45° to the positive direction of the <i>x</i> axis.	
		Find the equation of the curve	
(d)	(i)	For the function $f(x) = e^{x^2}$, copy and complete the following table, using 4 significant figures where necessary.	2
		x -1 -0.5 0 0.5 1	

(ii) Hence, use Simpsons rule with 5 function values to approximate 3 $\int^1 e^{x^2} dx \ .$

Leave your answer correct to 3 significant figures.

f(x)

Marks

Question 6 (19 marks)

(a)	(i)	Sketch $y = \log_e x$ and $y = x$ on the same diagram.	2
	(ii)	Use your diagram in (i) to indicate the number of solutions to the equation $\log_e x = x$	1
(b)		Given the curve $y = 2xe^{\frac{x}{2}}$	
	(i)	Show that $\frac{dy}{dx} = (x+2)e^{\frac{x}{2}}$	2
	(ii)	Find $\frac{d^2 y}{dx^2}$	2
	(iii)	Find the minimum value of $2xe^{\frac{x}{2}}$	2
	(iv)	For what values of <i>x</i> is the curve concave down?	1
	(v)	For what values of <i>c</i> does the equation $2xe^{\frac{x}{2}} = c$ have two unequal real roots?	1

(c) In the diagram AB meets the x and y axes at B and A respectively and it passes through the point
$$(1,2)$$
.
The angle OBA is θ in radians.

(i) Show that the equation of *AB* is given by

$$y = -(\tan\theta)x + 2 + \tan\theta$$

- (ii) Find the area of $\triangle OAB$ in terms of $\tan \theta$.
- (iii) Find the value of θ , correct to 2 decimal places, for which the area is a minimum.

End of paper

Marks

2

2

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

BLANK PAGE

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #3

Mathematics

Sample Solutions

Section	Marker
Α	AF
В	RB
С	RD

 $f(x) = x^2 + 3x + 2$ Question $(a) 150 \times TT = STT'$ 180 6 $f(2) = (2)^2 + 3(2) + 2$ = 12 (b) $\theta = 40 \times \pi = 2\pi^{\circ}$ (g)(1) LBED = 150° $Area = \frac{1}{2}r^2 O$ (co-interior angles are sugglementary BENCD $=\frac{1}{2}\times\left(16\right)^{2}\times\frac{2\pi}{9}$ (ii) In A'S BEA & COA LCAE is common $= \frac{256\pi}{9} \text{ cm}^2$ L REA = LCOA (corresponding angles) BE//CD , AREA ILLA CDA 2 89 cm² ." corresponding sides one in the same ratio $(\mathcal{O}(i)) \frac{1}{\sqrt{e}} \approx \mathcal{O} \cdot 6$ BE = AB AC co (ii) cos 3= -0.99 $\frac{\text{RE}}{9} = \frac{2}{6}$ (d) (;) - 4e-42 BE = 3 cm $(ii) \frac{1}{2} \sec^2\left(\frac{\pi}{2}\right)$ (e)(i) $P(no 4's) = \frac{27}{30} \times \frac{26}{29}$ $=\frac{117}{145}$ $P(at \ least \ one \ 4) = 1 - \frac{117}{145}$ $=\frac{28}{145}$ (f) f'(x) = 2x + 3 $f(x) = x^2 + 3x + C$ $\frac{since f(1) = 6}{6 = (1)^2 + 3(1) + C}$ c=2

(c)) de <0 from 1998 to mid 2002 Question 2 $\frac{(a)(i) y' = uv' + vu'}{u' = 2} x = lnx$ df=0 in mid 2002 y'= 2x. 1 + 2. Inx at >0 from mid 2002 to now $= 2 + 2 \ln x$ $(ii) \frac{d^2p}{dt^2} > 0$ (ii) $y' = \frac{vu' - uv'}{v^2}$ $u^2 = \frac{u^2 - uv'}{u^2 - subc} \times \frac{v^2 + u^2}{v^2}$ (d(i) amplitude = 3 porriod = 2 = 11 $y' = \frac{y' = -1, \cos 2}{x^2}$ y=351221 x sih x - cos x-31 (ii) J # 3 sih 2x obx $(b)(i) \int_{-32}^{4} dx$ $\begin{bmatrix} -\frac{3}{2}\cos 2x \end{bmatrix}^{\frac{1}{4}}$ = [-2x] = -2(4) - (-2(1)) $\frac{-\frac{3}{2}\cos 2(\frac{\pi}{4}) - \left(-\frac{3}{2}\cos 0\right)}{-\frac{3}{2}\cos \frac{\pi}{2} + \frac{3}{2}\cos 0}$ +2 = 3 7 $\int \frac{x^3 + x}{x^2} dx$ (;;) = $\int (3c + \frac{1}{3c}) dx$ $= \frac{x^2}{2} + \ln x + C$ (iii) $\int (e^{2x} + 2e^{x} + 1) dx$ $= \frac{1}{2}e^{2x} + 2e^{x} + x + C$

(a)(1) y = x - 452-4 let x - 4 = -x + 5x - 4_X -4x = 0(x-4) = 0y = -4y = 0A(0,-4 B(4'0 da` (11) A= 10 (-x+4x) dx $\frac{10^{-3} + 2x^2}{3} = \frac{-4}{7} + 2x^4 = 0$ $= -\frac{64}{3} + 32 = 10\frac{3}{3}$ ī, Ц ⇒y=lha. Gosses a aais at (1,0). Ъ $y = h \alpha$ $y' = -\frac{1}{2}$ $at \alpha = 1, m = -\frac{1}{2}$ $\begin{array}{c} (y-y_{1}) = m(x-x_{1}) \\ y-0 = 1(x-1) \\ y = x-1 \end{array} \xrightarrow{\begin{subarray}{c} 0 \\ \end{subarray}} 0 \end{subarray} x - y - 1 = 0 \\ \end{array}$ m= Using

 $\frac{3}{4} = \chi - 6\chi + 9\chi + 6^{-1}$ y = 3x - 123y' = 6x - 12(i) Stat pts exist when y=0 $3x^{-1}/2x+9=0$ $3(x^{2}-4x+3)=0$ $\begin{array}{c} x - 4 x + 3 = 0 \\ \hline x - 3 (x - 1) = 0 \\ \hline x = 3 \quad y = 27 - 64 + 27 + 6 = 6 \\ \hline x = 1 \quad y = 1 - 6 + 9 + 6 = 10 \quad (1, 10) \end{array}$ y' = bx3 - 12 > 0 min stat pt. y'' = bx1 - 12 < 0 max stat pt. (36) 1,10) (ii) inflections occur when y''=0 and there is a sign change 6x - 12 = 06(x-2)=0 $x=2, y=8-6\times 4+18+6=8$ 2,8 (2, 8)X=2-E $\frac{\chi_{=\lambda}}{2c=2+E}$ (2,8)y" < 0 Y" >0 Sigi change 15 a pt of inflection y Ŷ Afx=-1, y=-1-6-9+6 = -10: 10 _(I.I.) 6 atx = 4 = b4 - 96 + 36 t6Ś > X. 4 3 (14) Greatest rate of Increase is (see dudgram) At x=-1 14"1 is greatest. +-10

A - /-3 (d.) \mathcal{A} Ĉ B (1) EBC = BED alternate angles DE || BC
 BCE = AED COMESponding angles DE || BC
 ∴ △ BEC is Isosceles, EBC = BCE <u>AD = AE</u> ratio of intercepto result DB EC: as AF/DE/BC and AC is the transversal (ii) Why does (iii) SINC BE = EC FIOM () <u>AD</u> = <u>AE</u> From (ii) <u>DB</u> EC So <u>AD</u> = AE DB ER

dx V= T (a) da. TT a 1 $= \frac{\pi}{2} \ln (2x+1)$ $= \frac{\pi}{2} \left[\ln(3) - \ln(1) \right]$ = $\frac{\pi}{2} \ln 3 u \quad or \neq 1.73 u$ 3 -<u>12</u> 20 - = **2** 5 (i) (d) /-*(b)* - 4 \-5 $\binom{\beta}{20} \frac{12}{20} = \frac{3}{5}$ $(x) = \frac{4}{20} = \frac{1}{5}$ is.t ۱ 3 (ii) P(at least one 2) = one 2 on either marble or both 2 2nd 9 25

(i) y = ln(cosx) $y = \frac{1}{cosx} + \frac{1}{sinx} = \frac{-sinx}{cosx}$ (\mathcal{O}) fanz. $(i) - (-\tan \alpha \, dx = -\ln(\cos \alpha) + C$ (d) $\frac{\pi}{6} = \frac{-\tan 2\alpha}{2} = \frac{\pi}{6}$ 1/2 = 2 (tan 3 - tan 0) $= \frac{1}{2}(\sqrt{3} - 0)$ = $\sqrt{3}$ or = 0.866= ' $\frac{4x}{4+x^2} dx$ (e) => 2 [In20-In5 $\frac{\lambda x}{dx}$ = 2 $= 2 \ln 4$ = $\ln 4^2 = \ln 16^2$ $= 2 \ln(4+x^2)$ = 2/n20 - 2/n5 So a=16

QS(a)
$$y = x \sin x$$

 $y' = \sin x \cdot 1 + x \cdot \cos x$
 $z \sin x + x \cos x$
 $y'' = \cos x + (\cos x \cdot 1 + x \cdot -\sin x)$
 $z \cos x - x \sin x$
(b) $\int_0^1 \frac{e^x}{1 + e^x} dx$
 $= (\ln(1 + e^x)) \int_0^1$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln 2$
 $= \ln(1 + e) - \ln(1 + 1)$
 $= \ln(1 + e) - \ln(1 + e)$
 $= \ln(1 + e) - \ln(1 + e)$

(d)
$$f(\pi) = e^{\chi^{2}}$$

$$\frac{\chi}{f(\pi)} = e^{\chi^{2}}$$

$$\frac{\chi}{f(\pi)} = \frac{1}{2 \cdot 718} = \frac{1 - 0 \cdot 5}{1 \cdot 284} = \frac{0 \cdot 5}{1 \cdot 1 \cdot 284} = \frac{1}{2 \cdot 718}$$
(ii) $\int_{-1}^{1} e^{\chi^{2}} dx = \frac{0 \cdot 5}{3} (2 \cdot 718 + 4 \times 1 \cdot 284)$

$$+ 2 \times 1 + 4 \times 1 \cdot 284 + 2 \cdot 718$$

$$= 2 \cdot 93 \cdot 1 \cdot 3333 = - \cdot$$

$$\approx 2 \cdot 93 \cdot 1 \cdot 3333 = - \cdot$$

$$\begin{array}{l} \left(0 \quad (i) \quad \int_{-\infty}^{\infty} \int$$