

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

## 2007

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#3

## Mathematics <br> (2 Unit)

## General Instructions

- Reading Time - 5 Minutes
- Working time - 120 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question.
- Hand in your answers in 3 separate bundles. Section A (Question 1 and Question 2), Section B (Question 3 and Question 4) and Section C (Question 5 and Question 6)


## Total Marks - 100

- Attempt questions 1-6
- All questions are NOT of equal value.

Examiner: E. Choy

This page is intentionally left blank

## Section A - Start a new booklet.

## Question 1 (23 marks).

a) Differentiate with respect to $x$
(i) $\ln 3 x \quad 2$
(ii) $\tan \frac{x}{2}$
(iii) $\frac{1}{2} \sin 4 x$
(iv) $4+5 e^{-x}$
b) (i) What is the second derivative of $e^{0.2 x}$ ? 2
(ii) Find $f^{\prime \prime}(2)$ if $f(x)=5-2 \ln x \quad 2$
(iii) Find the domain for which $y=x-2 x^{3}$ is concave downwards. 2
(iv) Find the point of inflexion on the curve $y=3 x^{3}-3 x^{2}+3 x-1$. 2
c) Evaluate $\int_{-1}^{0} \sin \pi x d x$
d)


The shaded region is bounded by the lines $x=3, y=-3 x$, the $x$-axis and the curve $y=x^{2}-4$.

Show that A is the point $(1,-3)$ and find the area of the shaded region of the graph.
e) Sketch the graph of $y=\tan 2 x$ for $0 \leq x \leq 2 \pi$

## Question 2 (15 Marks).

a) Solve $\log _{7} 64=3 \log _{7} x$
b) Find the exact value of $\int_{\frac{1}{3}}^{\frac{1}{2}} \sec ^{2}\left(\frac{\pi x}{2}\right) d x$
c)


A bowl is formed by rotating part of the curve $y=\frac{x^{6}}{64}$ between $x=0$ and $x=4$ about the $y$-axis.
(i) Show that $x^{2}=4 y^{\frac{1}{3}}$
(ii) Find the volume of the bowl.
d) Convert $240^{\circ}$ to radians.
e)


With respect to the diagram above write down the ratios:
(i) $A Y: Y C$
(ii) $A Y: A C$
(iii) $Y C: A C$
f) $A B C$ is a triangle in which $A B=A C$. If $P, Q$ and $R$ are collinear points on 4 $A C, C B$ and $A B$ produced respectively, show that $B R \times P Q=P C \times R Q$

## End of Section A.

## Section B - Start a new booklet.

## Question 3 (19 marks).

a) (i) Copy and complete the following table of values for the curve

$$
y=\frac{1}{x+1}
$$

| $x$ | 0 | $1 / 2$ | 1 | $1^{1 / 2}$ | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ |  |  |  |  |  |

(ii) Use the trapezoidal rule with 5 function values from part (i), to give an approximation to $\int_{0}^{2} \frac{d x}{1+x}$. Give your answer correct to 2 decimal places.
b) Given that $n$ is a positive number, find the smallest and largest of the following numbers; $e^{\frac{n}{2}}, e^{n}, e^{-n}, e^{-\frac{1}{2} n}$.
c)


A piece of wire is bent to form a pentagon as shown. The area enclosed by the wire is $33 \mathrm{~cm}^{2}$.
(i) Express $y$ in terms of $x$.
(ii) Show that the perimeter is a minimum when $x=2 \sqrt{6+\sqrt{3}}$
d)


The diagram above shows a sector $O B C$ of a circle with centre $O$ and radius $r \mathrm{~cm}$. The arc $B C$ subtends an angle $\theta$ radians at $O$.
(i) Show that the perimeter of the sector is $r(2+\theta)$.
(ii) Given that the perimeter of the sector is 36 cm , show that its area

$$
A=\frac{648 \theta}{(\theta+2)^{2}}
$$

(iii) Hence show that the maximum area of the sector is $81 \mathrm{~cm}^{2}$.

Question 4 (14 marks).
a) Differentiate $x^{2} \ln x$ and hence determine $\int_{\sqrt{e}}^{e} x \ln x d x$
b) The region $R$ is bounded by the curve $y=\tan x$, the $x$-axis and the vertical line $x=\frac{\pi}{3}$
(i) Sketch $R$ and find its area.
(ii) Find the volume generated when $R$ is rotated about the $x$-axis.
c) Consider the function $y=1+e^{2 x}$
(i) What is the domain of the function?
(ii) Show that $x=\frac{1}{2} \ln (y-1)$
(iii) The volume $V$ formed when the area between $y=1+e^{2 x}$, the $y$ axis and the lines $y=2$ and $y=6$, is rotated about the $y$-axis is given by $V=\frac{\pi}{4} \int_{2}^{6}[\ln (y-1)]^{2} d y$.

Use Simpson's rule with 5 function values to estimate this volume.
Leave your answer rounded to 3 significant figures.

## End of Section B.

## Section C - Start a new booklet.

## Question 5 (15 marks).

a) Richard won the NSW Lotto on the $1^{\text {st }}$ January 2000. The prize was one million dollars. He decided to deposit the entire amount into an account which paid interest at a rate of $8 \%$ per annum. The interest was calculated quarterly and compounded quarterly. Richard then made an annual withdrawal $\$ 50000$, starting on the $1^{\text {st }}$ January 2001.
(i) Write down an expression for the amount in Richard's account immediately after his first withdrawal.
(ii) Show that the amount in Richard's account immediately after his third withdrawal is given by the expression:

$$
10^{6} \times 1.02^{12}-50000\left(1+1.02^{4}+1.08^{8}\right)
$$

(iii) How much, to the nearest dollar, was left in Richard's account after his twentieth withdrawal.
b) Given that $f(x)=x(x-2)^{2}$
(i) Show that $f^{\prime}(x)=3 x^{2}-8 x+4 \quad 1$
(ii) Find 2 values of x for which $f^{\prime}(x)=0$ and give corresponding values of $f(x)$.
(iii) Determine the nature of the turning points of the curve $y=f(x)$.
(iv) Find where the curve $y=f(x)$ crosses the $x$-axis.
(v) Sketch the curve $y=f(x)$.
(vi) Use your sketch to solve the inequation $x(x-2)^{2} \geq 0$

Question 6 (14 marks).
a)


Consider the graph of $y=f^{\prime}(x)$ shown above. Find the x co-ordinates of the minimum turning point and the maximum turning point of the graph $y=f(x)$.
b) Consider the two functions $f(x)$ and $g(x)$ where:

$$
f(x)=\frac{e^{x}-e^{-x}}{2} \quad g(x)=\frac{e^{x}+e^{-x}}{2}
$$

(i) Show that $f^{\prime}(x)=g(x)$ and $g^{\prime}(x)=f(x)$.
(ii) Show that the graph $y=f(x)$ is increasing for all values of $x$ and that there is a point of inflexion at $x=0$.
(iii) Show that the graph $y=g(x)$ has a minimum at $x=0$.
(iv) Sketch the graph of $y=g(x)$.
(v) Let $y=f(x)$. Show that this equation can be written in the form:

$$
e^{2 x}-2 y e^{x}-1=0
$$

Hence deduce that $x=\ln \left(y+\sqrt{y^{2}+1}\right)$.

## End of Section C.

## End of Examination.

## STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$
1)
a) i)

$$
\begin{aligned}
& y=\ln 3 x \\
& y^{\prime}=\frac{3}{3 x} \\
& y^{\prime}=\frac{1}{x}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& y=\tan \frac{x}{2} \\
& y^{\prime}=\frac{1}{2} \sec ^{2} \frac{x}{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
& y=\frac{1}{2} \sin 4 x \\
& y^{\prime}=2 \cos 4 x
\end{aligned}
$$

iv)

$$
\begin{aligned}
& y=4+5 e^{-x} \\
& y^{\prime}=-5 e^{-x}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& y=e^{0.2 x} \\
& y^{\prime}=0.2 e^{0.2 x} \\
& y^{\prime \prime}=0.04 e^{0.2 x}
\end{aligned}
$$

ii)

$$
\begin{aligned}
f(x) & =5-2 \ln x \\
f^{\prime}(x) & =-\frac{2}{x} \\
& =-2 x^{-1} \\
f^{\prime \prime}(x) & =2 x^{-2} \\
& =\frac{2}{x^{2}} \\
f^{\prime \prime}(2) & =\frac{2}{(2)^{2}} \\
& =\frac{1}{2}
\end{aligned}
$$

iii)

$$
\begin{gathered}
y=x-2 x^{3} \\
y^{\prime}=1-6 x^{2} \\
y^{\prime \prime}=-12 x \\
y^{\prime \prime}<0 \\
-12 x<0 \\
x>0
\end{gathered}
$$

iv)

$$
\begin{aligned}
& y=3 x^{3}-3 x^{2}+3 x-1 \\
& y^{\prime}=9 x^{2}-6 x+3 \\
& y^{\prime \prime}=18 x-6
\end{aligned}
$$

let $y^{\prime \prime}=0$

$$
\begin{array}{r}
18 x-6=0 \\
18 x=6 \\
x=\frac{1}{3}
\end{array}
$$

when $x=\frac{1}{3}$

$$
\begin{aligned}
& y=3\left(\frac{1}{3}\right)^{3}-3\left(\frac{1}{3}\right)^{2}+3\left(\frac{1}{3}\right)-1 \\
& y=-\frac{2}{9}
\end{aligned}
$$

The point of inflexion is at

$$
\left(\frac{1}{3},-\frac{2}{9}\right)
$$

c) $\int_{-1}^{0} \sin \pi x d x$

$$
=\left[-\frac{1}{\pi} \cos \pi x\right]_{-1}^{0}
$$

$$
=-\frac{1}{\pi} \cos (0)-\left(-\frac{1}{\pi} \cos (-\pi)\right)
$$

$$
=-\frac{1}{\pi}-\frac{1}{\pi}
$$

$$
=-\frac{2}{\pi}
$$

d)

$$
\begin{align*}
& y=x^{2}-4 \\
& y=-3 x \tag{2}
\end{align*}
$$

sub (1) into (2)

$$
\begin{aligned}
& x^{2}-4=-3 x \\
& x^{2}+3 x-4=0
\end{aligned}
$$

$(x+4)(x-1)=0$
$x=-4, x=1$
clearly $x=1$
when $x=1$

$$
\begin{aligned}
& y=-3(1) \\
& y=-3
\end{aligned}
$$

$\therefore A$ is the point $(1,-3)$

$$
\begin{aligned}
\text { Area } & =-\int_{0}^{1}-3 x d x-\int_{1}^{2}\left(x^{2}-4\right) d x+\int_{2}^{3}\left(x^{2}-4\right) d x \\
& =\int_{0}^{1} 3 x d x+\int_{1}^{2}\left(4-x^{2}\right) d x+\int_{2}^{3}\left(x^{2}-4\right) d x \\
& =\left[\frac{3 x^{2}}{2}\right]_{0}^{1}+\left[4 x-\frac{x^{3}}{3}\right]_{1}^{2}+\left[\frac{x^{3}}{3}-4 x\right]_{2}^{3} \\
& =\left[\frac{3(1)^{2}}{2}-0\right]+\left[4(2)-\frac{(2)^{3}}{3}-\left(4(1)-\frac{(1)^{3}}{3}\right)\right]+\left[\frac{(3)^{3}}{3}-4(3)-\left(\frac{(2)^{3}}{3}-4(2)\right)\right] \\
& =\frac{11}{2} \text { units }^{2}
\end{aligned}
$$

e) $y=\tan 2 x$
period $=\frac{\pi}{2}$

2)a)

$$
\begin{aligned}
\log _{7} 64 & =3 \log _{7} x \\
\log _{7} 64 & =\log _{7} x^{3} \\
\therefore x^{3} & =64 \\
x & =4
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int_{\frac{1}{3}}^{\frac{1}{2}} \sec ^{2}\left(\frac{\pi x}{2}\right) d x \\
= & {\left[\frac{1}{\left(\frac{\pi}{2}\right)} \tan \left(\frac{\pi x}{2}\right)\right]_{\frac{1}{3}}^{\frac{1}{2}} } \\
= & {\left[\frac{2}{\pi} \tan \left(\frac{\pi x}{2}\right)\right]_{\frac{1}{3}}^{\frac{1}{2}} }
\end{aligned}
$$

$$
=\frac{2}{\pi} \tan \left(\frac{\pi}{4}\right)-\frac{2}{\pi} \tan \left(\frac{\pi}{6}\right)
$$

$$
=\frac{2}{\pi}(1)-\frac{2}{\pi}\left(\frac{1}{\sqrt{3}}\right)
$$

$$
=\frac{2}{\pi}\left(1-\frac{1}{\sqrt{3}}\right)
$$


when $x=4$

$$
\begin{aligned}
& y=\frac{(4)^{6}}{64} \\
& y=64
\end{aligned}
$$

i)

$$
\begin{aligned}
& y=\frac{x^{6}}{64} \\
& x^{6}=64 y \\
& x^{2}=\sqrt[3]{64 y} \\
& x^{2}=4 y^{\frac{1}{3}}
\end{aligned}
$$

ii) $v=\pi \int_{a}^{b} x^{2} d y$
$V=\pi \int_{0}^{64}(4)^{2} d y-\pi \int_{0}^{64} 4 y^{\frac{1}{3}} d y$
$=16 \pi \int_{0}^{64} d y-4 \pi \int_{0}^{64} y^{\frac{1}{3}} d y$
$=16 \pi[y]_{0}^{64}-4 \pi\left[\frac{3}{4} y^{\frac{4}{3}}\right]_{0}^{64}$
$\left.=16 \pi(64-0)-3 \pi(64)^{\frac{4}{3}}-0\right)$
$=256 \pi$ units $^{3}$
d) $240^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{4 \pi}{3}$
e) i) $A Y: Y C=A X: X B$
$=3: 4$
ii) $A Y: A C=A X: A B$

$$
=3: 7
$$

iii)

$$
\begin{aligned}
Y_{C}: A C & =X B: A B \\
& =4: 7
\end{aligned}
$$

f)

$X$ lies on AR produced such that $P X / / C B$.

In $\triangle^{\prime} S B R Q \not \equiv P R X$

$$
\angle B R Q=\angle P R X \text { (vert. opp. } \angle \text { 's) }
$$

$\angle B Q R=\angle R P X$ (alt $\angle$ 's $B Q / / P X$ )
$\therefore B R Q \| I \triangle P R X$ (equiangular)

$$
\begin{aligned}
\therefore \quad \frac{B R}{R Q} & =\frac{R X}{P R} \text { (corr sides in same ratio) } \\
B R \cdot P R & =R X \cdot R Q \\
A B & =A C \text { (given) }
\end{aligned}
$$

clearly $A X=A P$

$$
\begin{aligned}
\therefore P C & =B X \\
& =B R+R X \\
\therefore R X & =P C-B R
\end{aligned}
$$

$B R \cdot P R=(P C-B R) R Q$
$B R \cdot P R=P C \cdot R Q-B R \cdot R Q$
$B R \cdot P R+B R \cdot R Q=P C \cdot R Q$
$B R(P R+R Q)=P C R Q$
$B R \cdot P Q=P C \cdot R Q$.

Q3 (a)

| $x$ | 0 | $1 / 2$ | 1 | $1 / 2$ | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 1 | $2 / 3$ | $1 / 2$ | $2 / 5$ | $1 / 3$ |

(II)

$$
\begin{aligned}
& \frac{1}{2} \\
= & \frac{1}{4}\left[1+\frac{1}{3}+2\left(\frac{4}{3}+\frac{1}{2}+\frac{2}{5}\right)\right] \\
= & \frac{1}{4}\left[\frac{4}{3}+\frac{47}{15}\right] \\
= & \left.\left.\frac{1}{4} \frac{20+15+12}{30}\right)\right] \\
= & \frac{67}{15} \\
= & 1042
\end{aligned}
$$

(b) Smallent $e^{-n}$ Langert $e^{\sim}$.
(c) (i)

$$
\begin{aligned}
& A= x y+\frac{1}{2} x^{2} \sin 60^{\circ} . \\
&=x y+\frac{1}{2} x^{2} \cdot \frac{\sqrt{3}}{2} \\
&=x y+\frac{\sqrt{3} x^{2}}{4}=33 \\
& \therefore x y=33-\frac{\sqrt{3} x^{2}}{4} \\
& y=33 x^{-1}-\frac{\sqrt{3}}{4} x .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P & =3 x+2 y \\
& =3 x+66 x^{-1}-\frac{\sqrt{3}}{2} x . \\
P^{\prime} & =3-\frac{\sqrt{3}}{2}-66 x^{-2}
\end{aligned}
$$

$$
p^{\prime \prime}=132 x^{-3}
$$

Let $\rho^{\prime}=0$ for max/min .

$$
\begin{aligned}
3-\frac{\sqrt{3}}{d} & =\frac{66}{x^{2}} \\
6-\sqrt{3} & =\frac{132}{x^{2}} \\
\frac{x^{2}}{132} & =\frac{1}{6-\sqrt{3}} \\
& =\frac{6+\sqrt{3}}{33} \\
\therefore x^{2} & =\frac{132(6+\sqrt{3})}{33} \\
& =4(6+\sqrt{3}) \\
x & = \pm 2 \sqrt{6+\sqrt{3}}
\end{aligned}
$$

Cleasly $x>0$ ot a minoceuss $a_{s} \rho^{\prime \prime}>0$

$$
a t x=2 \sqrt{6+\sqrt{3}}
$$

(d). (1)

$$
\begin{aligned}
P & =r+r+r \theta \\
& =2 r+r \theta \\
& =r(2+\theta) .
\end{aligned}
$$

(ii) If $p=36$. now

$$
A=\frac{1}{2} r^{2} \theta
$$

$$
\begin{aligned}
r(2+\theta) & =36 . & & =\frac{1}{2} \cdot\left(\frac{36}{2+\theta}\right)^{2} \cdot \theta . \\
r & =\frac{36}{2+\theta} & \mid \bar{A} & =\frac{648 \theta}{(2+\theta)^{2}}
\end{aligned}
$$

(III)

$$
\begin{aligned}
A & =\frac{648 \theta}{(2+\theta)^{2}} \\
A^{\prime} & =\frac{(2+\theta)^{2} \cdot 648-648 \theta \cdot 2(2+\theta)^{3}}{(2+\theta)^{4}} \\
& =\frac{648(2+\theta)[2+\theta-2 \theta]}{(2+\theta)^{4}} \\
& =\frac{648(2-\theta)}{(2+\theta)^{3}}
\end{aligned}
$$

$\operatorname{Let} A^{\prime}=0$

$$
\begin{aligned}
\frac{648(2-\theta)}{(2+\theta)^{3}} & =0 \\
\theta & =2 .
\end{aligned}
$$

$$
\begin{aligned}
\therefore A & =\frac{648 \times 2}{4^{2}} \\
& =\frac{648}{8} \\
& =81 .
\end{aligned}
$$

| $\theta$ | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $A^{\prime}$ | $\frac{648}{3^{3}}$ | 0 | $-\frac{648}{5^{3}}$ |
| $>0$ |  | $<0$ |  |
|  | 1 | - | $>$ |
|  | $\therefore M A X$. |  |  |

NB the "and decurative Dent" is purtably net the heet pptio abso.

$$
\underset{+0}{1}-i
$$

set enjfivent (re rreve lold it is a marr) $*$ yirseed th show it!!

Q4. a

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2} \ln x\right)=2 x \ln x+x^{2} \times \frac{1}{x} \\
& =2 x \tan x+x \text {. } \\
& \therefore \int_{\sqrt{e}}^{e}(2 x \ln x+x) d x=\left[x^{2} \ln x\right]^{e} \sqrt{e} . \\
& =e^{2} \ln e-(\sqrt{ } e)^{2} \ln \sqrt{2} \\
& =e^{2}-e \cdot \times \frac{1}{2} . \\
& =e^{2}-\frac{e}{2} \text {. } \\
& \therefore \int_{\sqrt{e}}^{e} 2 x \ln x d x+\int_{\sqrt{e}}^{e} x d x=e^{2}-\frac{e}{2} \\
& 2 \int_{\sqrt{e}}^{e} x \ln x d x+\left[\frac{x^{2}}{2}\right]_{\sqrt{e}}^{e}=e^{2}-\frac{e}{2} \\
& 2 \int_{\sqrt{e}}^{e} x \ln x d x+\frac{e^{2}}{2}-\frac{(\sqrt{e})^{2}}{2}=e^{2}-\frac{e}{2} \\
& 2 \int_{\sqrt{e}}^{e} x \ln x d x+\frac{e^{2}}{2}-\frac{e}{2}=e^{2}-\frac{e}{2} \\
& 2 \int^{e} x \ln x d x=\frac{e^{2}}{2} \\
& \text { Se } \\
& \therefore \int_{\sqrt{e}}^{e} x \ln x d x=\frac{e^{2}}{4}
\end{aligned}
$$

P4 b


$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos x} d x \\
& =-[\ln (\cos x)]_{0}^{\frac{\pi}{3}} \\
& \left.=-\ln \frac{1}{2}-\ln 1\right] \\
& =\ln 2 u^{2}
\end{aligned}
$$

(11)

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{3}} \tan ^{2} x d x \\
& =\pi \int_{0}^{\frac{\pi}{3}}\left(\sec ^{2} x-1\right) d x \\
& =\pi[\tan x-x]_{0}^{\frac{\pi}{3}} \\
& =\pi\left[\tan -\frac{\pi}{3}-\frac{\pi}{3}-(0-0)\right] \\
& =\pi \cdot\left(\sqrt{3}-\frac{\pi}{3}\right) u^{3} .
\end{aligned}
$$

(1) 4 (COMTD)
c (1) $\quad x \in R$. (au Real, itc)
(11)

$$
\begin{aligned}
y & =1+e^{2 x} \\
y-1 & =e^{2 x} \\
\therefore 2 x & =\ln (y-1) \\
x & =\frac{1}{2} \ln (y-1)
\end{aligned}
$$

(III) Mocing Simposir Rule. to eracuate The integnal

$$
\begin{aligned}
\therefore V=\frac{\pi}{4} \times \frac{1}{3}[0+2.5902 & +4(0.4804+1.9218) \\
& +2(1.2069)]
\end{aligned}
$$

$$
\doteqdot 3.83 \mathrm{~m}^{3} \quad(t \operatorname{ta} 3 . \operatorname{sig} t \cos )
$$

Jisk3 $200>2$ unit Solutions.
5 (a) Januany $1^{\text {st }} 2000$ \$1,00,000

$$
\gamma=8 \% \text { pa } \rightarrow \frac{8}{4}=2 \% \text { per quater }
$$

miterest calawided quarterty, perd quarterty.
Annual withdrawlal $\$ 50,000$ starting Jan 12001
(i) Janl 2001 $\quad A_{1}=1,000,000\left(1+\frac{2}{100}\right)^{4}-50000$

$$
\begin{equation*}
=10^{6} \times 1.02^{4}-50,000 \tag{2}
\end{equation*}
$$

(ii) Jan $2003 \quad A_{2}=\left(10^{6} \times 102^{4}-50,000\right)\left(1+\frac{2}{100}\right)^{4}-50000$
$=\left(10^{6} \times 1.02^{4}-50000\right)(1.02)^{4}-500004$
$=10^{6} \times 1.02^{8}-50000-50000 \times 102^{4}$

$$
=10^{6} \times 1.02^{8}-50000\left(1+1.02^{4}\right)
$$

$\because \operatorname{Jan} 12003$
A

$$
\begin{aligned}
& \text { (iin) } 20 \text { th mithictrawid }
\end{aligned}
$$

$$
\begin{align*}
& =10^{6} \times 1.02^{80}-50000\left(\frac{1-1.02^{4} \times 1.02^{76}}{1-1.02^{4}}\right) \\
& =1,000,000 \times 1.02-50,000\left(\frac{1-1.02^{80}}{1-1.02^{9}}\right) \\
& =4875439956-2350683.978 \\
& =\$ 2524755 \% 18 \\
& \because \$ 2524955 \text { was lept. } \tag{J}
\end{align*}
$$



Student No.: $\qquad$
$\qquad$

Paper: $\qquad$
$\qquad$

Section: $\qquad$

| Q.No | Tick | Mark |
| :--- | :--- | :--- |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |
| 7 |  |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |

Sheet No.: $\qquad$ of $\qquad$ for this Section.

(iii) now

$$
\begin{align*}
& y^{\prime}(x)=3 x^{2}-8 x+4 \\
& f^{\prime \prime}(x)=6 x-8 \tag{1}
\end{align*}
$$

at $(2,0) \quad f^{\prime \prime}(x)=12-8=4>0$
at $\left(\frac{2}{3}, 1 \frac{5}{27}\right) f^{\prime \prime}(x)=6+\frac{2}{3}-8=4-8=-4<0$ max kept 0
(iv) $f(x)=x(x-2)^{2}$
when $f(x)=0$
(v)

check, $x=3 f(x)=3(3-2)^{2}=3$.

$$
x=-1, f(x)=-1(-1-2)^{2}=-1 \times 9=-9
$$

(vi) $x(x-2)^{2} \geqslant 0$
$\rightarrow x \geqslant 0$ from sketch
(1)

Student No.: $\qquad$
$\qquad$

Paper: $\qquad$
$\qquad$

Section: $\qquad$

Sheet No.: $\qquad$ of. $\qquad$ for this Section.

| Q.No | Tick | Mark |
| :--- | :--- | :--- |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |
| 7 |  |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |

Q 6 (a) $f^{\prime}(x)$ goes godent of tangent line
at $x$ values eg $(-3,-1)$ means at $x=-3$ on the ongmal cure, the slope of the tangent time at $x=-3$ is $m=-1$. $x \quad 0$ $x+\varepsilon \quad /$ positive slop.

b.(b) $f(x)=\frac{e^{x}-e^{-x}}{2} \quad g(x)=\frac{e^{x}+e^{-x}}{2}$
(i) $f^{\prime}(x)=\frac{e^{x}-e^{-x}-1}{2}=\frac{e^{x}+e^{-x}}{2}=g(x)$
and $\quad g^{\prime}(x)=\frac{e^{x}+e^{x} x-1}{2}=\frac{e^{x}-e^{-x}}{2}=f(x)$
(ii) If $y=f(x)$ is an Increasing graph then

$$
f(x)>0 \quad \forall x
$$

show $\frac{e^{x}+e^{-x}}{2}>0 \quad \forall x$. show $e^{x}+e^{-x}>0$


The addition of ordinate of $e^{x} e^{-x} f x$ will always be $>0$.
(1)

$$
\begin{gathered}
f^{\prime}(x)=\frac{e^{x}+e^{-x}}{2} \\
f^{\prime \prime}(x)=\frac{e^{x}+e^{-x}-1}{2} \\
\frac{e^{x}-e^{-x}}{2}
\end{gathered}
$$

So at $x$

$$
\begin{aligned}
& \left(x=0-\varepsilon \quad f^{\prime \prime}(x)=\frac{e^{-1}-e^{-1}}{2<1}\right. \\
& x=0, f^{\prime \prime}(x)=\frac{1-1}{2}=0 \\
& x=0+\varepsilon f(x)=\frac{e^{-1}-e^{-\infty}}{2} \\
& \text { sig change? }
\end{aligned}
$$

inflexion at $x=0$.
(iii)

$$
\begin{aligned}
& g(x)=\frac{e^{x}+e^{-x}}{2} \\
& g^{\prime}(x)=\frac{e^{x}-e^{-x}}{2}
\end{aligned}
$$

When $\frac{e^{x}-e^{-x}}{2}=0$

$$
\begin{aligned}
& \frac{e^{x}}{1}-\frac{1}{e^{x}}=0 \\
& \frac{e^{x}}{1}=\frac{1}{e^{x}} \\
& \left(e^{x}\right)^{2}=1 \\
& e^{2 x}=e^{0} \\
& 2 x=0 \Rightarrow x=0 \\
& g^{\prime \prime}(x)=\frac{e^{x}+e^{-x}}{2} \\
& \text { at } x=0, \quad g(x)=\frac{e^{0}+e^{-0}}{2}=\frac{1+1}{2}>0 \text { Min } \\
& \text { (IV) } y=f(x)<e^{x} e^{-x} \\
& x:-4-3-2 \pm 01234 \\
& f(x)=-77510-36-120<1036.027,3
\end{aligned}
$$


(v) $y=\frac{e^{x}-e^{-x}}{x}$

$$
\text { now for } e^{2 x}-2 y e^{x}-1=0
$$

$$
\begin{aligned}
& 2 y=e^{x}-\frac{1}{e^{x}} \\
& 2 y e^{2 x}=e^{2 x}-1 \\
& e^{2 x}-2 y e^{x}-1=0
\end{aligned}
$$

$$
\begin{gathered}
\quad \text { so } w^{2}-2 w y-1=0 \\
\quad w=\frac{2 y \pm \sqrt{4 y^{2}-4 x x-1}}{2} \\
=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2} \\
=\frac{2 y \pm 2 \sqrt{y^{2}+1}}{2} \\
w=y \pm \sqrt{y^{2}+1}
\end{gathered}
$$

now $e^{x}=y \pm \sqrt{y^{2}-1}$

$$
\begin{aligned}
& \ln e^{x}=\ln \left(y+\sqrt{y^{2}}\right) \\
& x=\ln \left(y+\sqrt{y^{2}+1}\right)
\end{aligned}
$$

y car be any value so for /h to exit $y+\sqrt{y^{2}+1} \geqslant 0$ is chosen.
So $x=\ln \left(y+\sqrt{y^{2}+1}\right)$

