

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2007

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #3

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 120 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question.
- Hand in your answers in 3 separate bundles. Section A (Question 1 and Question 2), Section B (Question 3 and Question 4) and Section C (Question 5 and Question 6)

Total Marks - 100

- Attempt questions 1-6
- All questions are **NOT** of equal value.

Examiner: E. Choy

This page is intentionally left blank

Section A – Start a new booklet.

Question 1 (23 marks).Marksa) Differentiate with respect to x2

(1)	in SX	-
(ii)	$\tan\frac{x}{2}$	2
(iii)	$\frac{1}{2}\sin 4x$	2
(iv)	$4 + 5e^{-x}$	2
(i)	What is the second derivative of $e^{0.2x}$?	2
(ii)	Find $f''(2)$ if $f(x) = 5 - 2 \ln x$	2
(iii)	Find the domain for which $y = x - 2x^3$ is concave downwards.	2
(iv)	Find the point of inflexion on the curve $y = 3x^3 - 3x^2 + 3x - 1$.	2
Evalua	the $\int_{-1}^{0} \sin \pi x dx$	2

b)

d)

The shaded region is bounded by the lines x = 3, y = -3x, the *x*-axis and the curve $y = x^2 - 4$. Show that A is the point (1,-3) and find the area of the shaded region of the graph.

3

2

Solve $\log_7 64 = 3\log_7 x$

Question 2 (15 Marks).

a)

b) Find the exact value of
$$\int_{\frac{1}{3}}^{\frac{1}{2}} \sec^2\left(\frac{\pi x}{2}\right) dx$$
 2

A bowl is formed by rotating part of the curve $y = \frac{x^6}{64}$ between x = 0 and

x = 4 about the *y*-axis.

(i) Show that
$$x^2 = 4y^{\frac{1}{3}}$$
 1

1

Marks

1

3

e)

With respect to the diagram above write down the ratios:

(i)	AY:YC	1	L
(ii)	AY: AC	1	L
(iii)	YC:AC	1	

f) *ABC* is a triangle in which AB = AC. If P,Q and R are collinear points on *AC*, *CB* and *AB* produced respectively, show that $BR \times PQ = PC \times RQ$ 4

End of Section A.

Section B – Start a new booklet.

Marks

1

Question 3 (19 marks).

a)

(i) Copy and complete the following table of values for the curve

$y = \frac{1}{x+1}$						
x	0	1⁄2	1	11⁄2	2	
У						

(ii) Use the trapezoidal rule with 5 function values from part (i), to give an approximation to $\int_{0}^{2} \frac{dx}{1+x}$. Give your answer correct to 2 3 decimal places.

b) Given that *n* is a positive number, find the smallest and largest of the

following numbers; $e^{\frac{n}{2}}, e^n, e^{-n}, e^{-\frac{1}{2}n}$.

c)

A piece of wire is bent to form a pentagon as shown. The area enclosed by the wire is 33cm².

- (i) Express y in terms of x. 2
- (ii) Show that the perimeter is a minimum when $x = 2\sqrt{6} + \sqrt{3}$ 4

The diagram above shows a sector OBC of a circle with centre O and radius r cm. The arc BC subtends an angle θ radians at O.

(i)	Show that the perimeter of the sector is $r(2+\theta)$.	2

(ii) Given that the perimeter of the sector is 36cm, show that its area
$$A = \frac{648\theta}{(\theta+2)^2}$$

(iii) Hence show that the maximum area of the sector is 81cm^2 . 4

Quest	tion 4 (14 n	narks).	Marks
a)	Differenti	ate $x^2 \ln x$ and hence determine $\int_{\sqrt{e}}^{e} x \ln x dx$	4
b)	The regio	n R is bounded by the curve $y = \tan x$, the x-axis and the vertical	
	line $x = \frac{\pi}{3}$	$\frac{\sigma}{3}$	
	(i)	Sketch <i>R</i> and find its area.	2
	(ii)	Find the volume generated when <i>R</i> is rotated about the <i>x</i> -axis.	2
c)	Consider	the function $y = 1 + e^{2x}$	
	(i)	What is the domain of the function?	1
	(ii)	Show that $x = \frac{1}{2} \ln(y-1)$	1
	(iii)	The volume V formed when the area between $y = 1 + e^{2x}$, the y-	
		axis and the lines $y = 2$ and $y = 6$, is rotated about the y-axis is	
		given by $V = \frac{\pi}{4} \int_{2}^{6} \left[\ln(y-1) \right]^{2} dy$.	
		Use Simpson's rule with 5 function values to estimate this volume.	
		Leave your answer rounded to 3 significant figures.	4

End of Section B.

Section C – Start a new booklet.

Questi	ion 5 (15 i	marks).	Marks
a)	Richa	ard won the NSW Lotto on the 1 st January 2000. The prize was one	
	millio	on dollars. He decided to deposit the entire amount into an account	
	which	h paid interest at a rate of 8% per annum. The interest was calculated	
	quarte	erly and compounded quarterly. Richard then made an annual	
	withd	lrawal \$50000, starting on the 1 st January 2001.	
	(i)	Write down an expression for the amount in Richard's account	2
		immediately after his first withdrawal.	2
	(ii)	Show that the amount in Richard's account immediately after his	
		third withdrawal is given by the expression:	3
		$10^6 \times 1.02^{12} - 50000 (1 + 1.02^4 + 1.08^8)$	
	(iii)	How much, to the nearest dollar, was left in Richard's account	1
		after his twentieth withdrawal.	1
b)	Giver	that $f(x) = x(x-2)^2$	
	(i)	Show that $f'(x) = 3x^2 - 8x + 4$	1
	(ii)	Find 2 values of x for which $f'(x) = 0$ and give corresponding values of $f(x)$.	2
	(iii)	Determine the nature of the turning points of the curve $y = f(x)$.	2
	(iv)	Find where the curve $y = f(x)$ crosses the x-axis.	1
	(v)	Sketch the curve $y = f(x)$.	2
	(vi)	Use your sketch to solve the inequation $x(x-2)^2 \ge 0$	1

Consider the graph of y = f'(x) shown above. Find the x co-ordinates of the minimum turning point and the maximum turning point of the graph y = f(x).

b) Consider the two functions f(x) and g(x) where:

$$f(x) = \frac{e^{x} - e^{-x}}{2} \qquad \qquad g(x) = \frac{e^{x} + e^{-x}}{2}$$

(i) Show that
$$f'(x) = g(x)$$
 and $g'(x) = f(x)$. 2

- (iii) Show that the graph y = g(x) has a minimum at x = 0.
- (iv) Sketch the graph of y = g(x).
- (v) Let y = f(x). Show that this equation can be written in the form:

$$e^{2x} - 2ye^x - 1 = 0$$
3

Hence deduce that $x = \ln(y + \sqrt{y^2 + 1})$.

End of Section C.

End of Examination.

Marks

3

2

2

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

~ A is the point (1, -3) Area = $-\int_{0}^{2} - 3x \, dn - \int_{0}^{2} (x^{2} - 4) \, dn + \int_{2}^{3} (x^{2} - 4) \, dn$ $= \int_{0}^{2} 3n dn + \int_{1}^{2} (4 - n^{2}) dn + \int_{0}^{3} (n^{2} - 4) dn$ $= \begin{bmatrix} 3n \\ 2 \end{bmatrix} + \begin{bmatrix} 4n - n \\ 3 \end{bmatrix} + \begin{bmatrix} n^{3} - 4n \\ 3$ $= \left[\frac{3(1)^{2}-0}{2}\right] + \left[\frac{4(2)-(2)^{3}-(4(1)-(1)^{3})}{3}\right] + \left[\frac{(3)^{3}-4(3)-(\frac{(2)^{3}-4(2)}{3}-4(2))}{3}\right]$ $=\frac{11}{2}$ units e) $y = tan 2\pi$ period = $\frac{\pi}{2}$ A ST 211

 $2)a) \log_{10} 64 = 3\log_{10} \pi$ i) $y = \frac{\pi}{4}$ $\log_{7} 64 = \log_{7} 2^{3}$ x = 64y $n^{2} = \sqrt[3]{64y}$ $n^{2} = 4y^{\frac{1}{3}}$ $:: n^{3} = 64$ x = 4ii) $V = \pi \int_{-\infty}^{\infty} x^2 dy$ b) $\int_{\frac{1}{2}}^{\frac{1}{2}} \sec\left(\frac{\pi x}{z}\right) dx$ $V = \pi \int_{0}^{64} (4)^{2} dy - \pi \int_{0}^{64} 4y^{\frac{1}{3}} dy$ $= \left[\frac{1}{\left(\frac{\mathbf{H}}{2}\right)} + \cos\left(\frac{\mathbf{T}_{\mathcal{H}}}{2}\right) \right]_{\perp}^{\frac{1}{2}}$ $= 16\pi\int_{0}^{64} dy - 4\pi\int_{0}^{44} y^{\frac{1}{3}} dy$ $= \left(\frac{2}{\pi} \tan\left(\frac{\pi}{2}\right)\right)^{\frac{1}{2}}$ $=16\pi \left[y \right]_{0}^{64} - 4\pi \left[\frac{3}{4} y^{\frac{4}{3}} \right]^{64}$ $= 16T (64-0) - 3T (64)^{\frac{4}{3}} - 0)$ = 256T units $= \frac{2}{\pi} + an\left(\frac{\pi}{4}\right) - \frac{2}{\pi} + an\left(\frac{\pi}{6}\right)$ $= \frac{2}{\pi} \left(1 \right) - \frac{2}{\pi} \left(\frac{1}{\sqrt{3}} \right)$ d) 240 × $\pi = 4\pi$ $=\frac{2}{\pi}(1-\frac{1}{3})$ e);) AY:YC = AX:XB = 3:4 c) $\int_{-\frac{64}{2}}^{\frac{9}{2}} \int_{-\frac{64}{2}}^{\frac{9}{2}} \int$ ii) AY: AC = AX: AB= 3:7 iii) $Y_C : A C = X_B : AB$ = 4:7 when x = 4y = (4)69y=64

A f)X lies on AR produced such that PX//CB. In I'S BRQ & PRX LBRQ = LPRX (vert. opp. L's) LBQR = LRPX (alt L's BQ //PX) : BRQ III & PRX (equiangular) . <u>BR</u> = <u>RX</u> (corr. sides in same ratio) <u>RQ</u> <u>PR</u> BR.PR = RX.RQ AB=AC (given) cleanly AX = AP $\therefore PC = BX$ = BR + RX $\therefore RX = PC - BR$ BR.PR = (PC - BR)RQBR. PR = PC.RQ - BR. RQ BR. PR + BR. RQ = PC. RQ BR(PR+RQ) = PC.RQBR. PQ = PC. RQ.

 $P'' = 132x^{-3}$

Let P'= o for max men. $3 - \sqrt{3} = \frac{66}{7^2}$ $6 - \sqrt{3} = \frac{132}{2}$ $\frac{x^2}{132} = \frac{1}{6-13}$ $= \frac{6+\sqrt{3}}{33}$ $x^{2}, x^{2} = \frac{132(6+\sqrt{3})}{23}$ = 4 (6+13) // $x = \pm 2\sqrt{6+\sqrt{3}}$ of a min occurs Clearly x >0 as P">0 at x = 2 16+13. QLI. (1) P=T+T+TO = 2++10 (= -(2+0)) $(11) \frac{1}{10} P = 36.$ Man A= 1 - 20 T(a+o) = 36. $= \frac{1}{2} \cdot \left(\frac{36}{3+6}\right)^2, \mathcal{O}.$ $\gamma = \frac{36}{2+0}$ $A = \frac{6480}{(2+0)^{2}}$

and a second second

A= 6480 (lu)(2+0× A' = (2+0\2,648 - 6480,2(2+0)) $(2+0)^{4}$ = 648 (2+0) [2+0-20] $(2+0)^4$ $= \frac{648}{(2+0)^{3}}$ Let A' = 0 $\frac{648(2-0)}{(2+0)^3} = 0$ $A = \frac{648 \times 2}{4^{2}}$ = <u>648</u>. 8 / -* . MAX. - 81. NB The 2nd dematine Sent" is pertably net the hert office. also. 1- \ is

A you need to show it !!

Q4. $\frac{d}{dx}(x' \ln x) = 2x \ln x + x' + x' x + x' + x'$ $\therefore \int [\partial x \ln x + x] dx = \begin{bmatrix} x^2 \ln x \end{bmatrix} \frac{1}{\sqrt{e}}.$ = elne-dejhve $= e^{2} - e \cdot \frac{1}{2}$ $\frac{e}{\int \partial x \ln x \, dx + \int x \, dx = e^{\gamma} - e}{\sqrt{e}}$ $2\int x \ln x dn + \left[\frac{x}{2}\right] \sqrt{e} = e^{2} - e^{2}$ $\partial \int x \ln x \ln x + \frac{e^2}{2} - (\sqrt{e})^2 = \frac{e^2}{2} - \frac{e}{2}$ $\partial \int x \ln x dn + \frac{e^2}{2} - \frac{e}{2} = \frac{e^2}{2}$ $2\int x \ln x dn = \frac{e^{1}}{2} / / /$ $\begin{array}{c} \cdot \cdot \int x \ln x \, dx = e^{2} \\ \cdot \cdot e^{2} \\ \cdot \cdot e^{2} \\ \cdot \cdot e^{2} \\ \cdot \cdot e^{2} \end{array}$

0 A = Stann dn. = $\int_{a}^{\frac{\pi}{3}} \frac{dn}{con} dn$. $= - \left[ln(losx) \right]^{\frac{T}{3}}$ = - fln 1/2 - lav 1 (In 2 V= TI (Tan dn. (こ) $= \pi \int_{\pi}^{\pi} \left(\sec^2 \pi - i \right) dn$ $=\pi \int Jan - \pi \int^{\frac{\pi}{3}}$ = 11 f ton # - # - (0-0)] $= \overline{n} \cdot \left(\sqrt{3} - \frac{\overline{n}}{3} \right) \cdot n^{3} \cdot$

Q4 (CONTD) ⊆ (1) x ∈ R. (au Reals etc.) $(m) \quad y = 1 + e^{dx}$ y-1= e2n. $-i \cdot 2x = ln(y-i)$ $z = \frac{1}{2} ln(y-1)$ (Inx Moing Simposi's Rule. to evaluate the integral $= \int_{-\infty}^{\infty} \left[f(x_1 - i) \right]_{-\infty}^{\infty} dy \cdot \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int_$ $V = \frac{\pi}{4} \times \frac{1}{3} \left[0 + 2.5902 + 4 \left(0.4804 + 1.9218 \right) \right]$

= 3.83 m³ (t 3. SIG FIGS)

+ 2 (1.2069)

Tisk 3 2007 2 unit Solutions

Januar, 1 2000 \$1,000,000 (a) r= 82 p.a = 4=26 per quartes interest catalated quartery paid quarterly annual withdrawal \$50,000 starting Jan 1 2001. (i) $J_{an}/2001$ $A_{1} = 1,000,000(1+\frac{2}{100})^{-50000}$ = 10⁶×1.02⁴-50,000 (z) 1) $J_{an1} 2002 H_3 = (10 \times 1.02 - 50,000)(1+\frac{2}{100}) - 50000^{\circ}$ = (10 × 1.02 - 50000)(1.02) - 50000; = 10 × 1.02 - 50000 - 50000 × 1.02 = 10 × 1.02 × 50000(1+1.02 $\int an | 2003 A_3 = 10 \times 1.02 - 50000 (1+1.02 + 1.02^8)$ $A_{20} = 10^{6} \times 102^{-5000} \times 1102^{+102} + 102^{-102}$ (in) 20 with drawal $= 10^{6} \times 1.02^{80} - 5000^{\circ} \left(\frac{1 - 1.02^{4} \times 1.02^{76}}{1 - 1.02^{4} \times 1.02^{76}} \right)$ 151ng $1 - 1.02^{4}$ = 1,000,000 × 1.02 - 50,000/1-1.02 1-1.024 4875439-156-2350683.978 = \$ 2524755018 = \$2524755 Was left.

Sydney Boys' High School

Student No.:		Q.No	Tick	Mark
		1		•
		2		
_		3		
Paper:		4		
		5		
		6		
Section:		7		
Section.		8		
Sheet No.:	of for this Section.	9		
		10		
	$f(x) = \chi(x-2)^{2}$			
(1) p(X)	$ \begin{aligned} &= \chi(\chi-2)(\chi-2) \\ &= \chi(\chi^2-4\chi+4) \\ &= \chi^3-4\chi^2+4\chi^2 \end{aligned} $	· · · · · · · · · · · · · · · · · · ·	······	
1/1	$)=2\chi^{2}-8\chi+4$ (1)			
(ii) fl	then $3\alpha - 8\alpha + 4 = 0$ $(3\alpha - 6)(3\alpha - 2) = 0$	× /4 + ~8	<u> </u>	
19 II 	$\frac{3}{3(\chi-2)(3\chi-2)} = 0$,		
	$\gamma = 2$ $\gamma = \frac{2}{3}$.			
	$f(\alpha) = 2(2-2) = 0$ $f(\alpha) = \frac{2}{3}(\frac{2}{3}) = \frac{2}{3}(\frac{2}{3})$	2)2		
	$f(n) = \chi(\chi - \chi) = 0$ $f(n) = 3$ (3)			5
	$(2,0)(i)$ $(\frac{2}{3}, \frac{5}{27})$	$\frac{x-4}{3}$	= 1	27

(iii) now f'(x) = 3x - 8x + 4f''(x) = 6x - 8min t. pt at (2,0) 7"/se)=12-8=4>0 $at(\frac{2}{3},1\frac{5}{27}) + \frac{7}{2}(x) = 6x\frac{2}{3} - 8 =$ 4--8=-(iv) $f(x) = \chi(x-2)$ when 7(2)=0 \$10550 (1) check, $\chi = 3 \quad \overline{f(x)} = 3(3-2)^{21} = 3$ $\chi = -1, \quad \overline{f(x)} = -1(-1-2)^{2} = -1 \times 9 = -9.$ $(v_1) \chi(\chi-2) \ge 0$ From ske X≥0

Sydney Boys' High School

Student No.: Q.No Tick Mark I 2 3 Paper: 4 5 6 7 Section: 8 9 of for this Section. Sheet No.: 10 (b (a) f (x) quies grodient of tangent lines at x Nalues eg (-3-1) means at x=-3 on the orginal curve, the slope of the tangent line at x=-3 is m=negsteie slope Minimum turning pt X-E X+E re negative X = stope is zero x=1+E stype positive positive stope negative stope MAX fumming point slope tue -8 $\chi + \varepsilon$ $\alpha =$ slope e Inno くょぐ

 $\frac{1}{1} \frac{1}{f(x)} = \frac{x - x}{l - l - x - 1} = \frac{x - x}{l + l} = \frac{1}{2} \frac{x - x}{l} = \frac{1}{2} \frac{1}{$ $g(x) = \ell \frac{x}{f\ell} \frac{x}{x-l} = \ell \frac{x}{f\ell} \frac{x}{x-l} = f(x),$ and. (11) IF y= Hoc) is an increasing graph then show $\frac{e^{x} + e^{-x}}{2} > 0$ $\forall x$. +e > 0 $y = 1e^{y}$ show e f ordinates of $l, e^{-x} \neq x$ wi $\frac{\chi}{(NOODODAM)} = \frac{\chi}{\chi}$ $f'(x) = e^{x} + e^{-x} + -1$ $\chi = \chi$ sign change Inflection at x = 0-<u>t</u>-t

 $g(sc) = \frac{x}{2} \cdot \frac{x}{2}$ $= \underbrace{\underbrace{l}_{-1} \underbrace{l}_{-1} \underbrace{l}_{-1}$ ℓ^{α} $\int_{e^{-\alpha}}^{1}$ (e^{α}) $\int_{C}^{2x} \int_{Z}^{0} \int_{$ $2\chi = 0$ $\ell + \ell^{-\alpha}$ g $\chi = 0, g'(\chi)$ aл 0+0 01234) f (x f(x): -17 -10 3.6-1.2 0 12 36.10 27.3

-54 $y = g(x) = \frac{e}{2}$ x:-4-3-2-101234 A g(oi) 3(x): 27.3 10 3.8 1.5 1 1.5 3.8 10 17.3 \geq_{α} Now for l -Let $W=e^{x}$ $50 \quad W^{2} - 2Wy - 1 = 0$ $a = 1, \quad b = -2y, \quad C = -1$ y = e - e $2y=e,-\frac{1}{e^{\alpha}}$ $W = 2y \pm \sqrt{4y^2 - 4x/x - 1}$ $\begin{array}{c} x & 2x \\ \lambda y e = e - 1 \\ y e^{2x} - 2y e - 1 \end{array}$ = 2y + 14,2+4 = 2y + 2/y2+1 $W = \frac{y}{4} \sqrt{y^2 + 1}$ $\mathcal{L} = \mathcal{Y} \neq \sqrt{\mathcal{Y}^2 + 1}$ Ine = In (y = /y=+, In(y+ Jyz+) y can be any value so for IN-20 is chosen So $\chi = \left| \mathcal{N} \left(\frac{y}{y} + \sqrt{\frac{y^2 + 1}{y^2 + 1}} \right) \right|$