

# SYDNEY BOYS HIGH SCHOOL moore park, surry hills

# 2010

### **YEAR 12**

**ASSESSMENT TASK #3** 

# **Mathematics**

#### **General Instructions**

- Reading Time 5 Minutes
- Working time 120 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise stated.
- Full marks may not be awarded for careless or badly arranged work.

### Total Marks - 82

- Attempt questions 1 3
- All questions are **NOT** of equal value.
- Each question is to be returned in a separate bundle.

Examiner: A. Fuller

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

### **STANDARD INTEGRALS**

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE: 
$$\ln x = \log_e x, x > 0$$

#### Total marks 82

#### Attempt questions 1 to 3

Answer each **Question** in a **Separate** writing booklet

# (Use a SEPARATE writing booklet)

| Question 1 (              | 26 marks)                                              |   |
|---------------------------|--------------------------------------------------------|---|
| (a) Express               | $\frac{5\pi}{6}$ in degrees.                           | 1 |
| (b) Find the (i) $\log_e$ | e following correct to 2 decimal places: $\frac{3}{2}$ | 2 |
| (ii) sin 2                | $2^c$                                                  |   |
| (c) Simplify              | $e^{3\ln x}$                                           | 1 |
| (d) Different<br>(i) 1 —  | tiate the following with respect to $x$ :<br>$2x^2$    | 5 |
| (ii) 2 sin                | $1 x^2$                                                |   |
| (iii) $e^{1-2}$           | x                                                      |   |
| (iv) $\frac{\cos x}{x}$   | $\frac{2x}{2}$                                         |   |
| (v) (1 –                  | $(-2\ln x)^2$                                          |   |

- (e) State a primitive (indefinite integral) of:
  - (i)  $x^{100}$
  - (ii)  $e^{100x}$
  - (iii)  $\sqrt{100x}$

(iv) 
$$\frac{100 + x^2}{x^2}$$

(f) Find the radius of a sector which has an arc length of 8 cm that subtends an angle 2 of 30° at the centre.



- (g) (i) Find all the values for x for which  $4\cos x + 2 = 0$  where  $0 \le x \le 2\pi$ .
  - (ii) Hence sketch the graph  $y = 4\cos x + 2$  for  $0 \le x \le 2\pi$  marking clearly where it intersects with the x and y axes.

5

- (h) A function is defined by  $f(x) = x^3 3x^2 12$ .
  - (i) Find the coordinates of the stationary points of the graph y = f(x), and determine their nature.
  - (ii) Hence sketch the graph of y = f(x).
  - (iii) From the graph, or otherwise, for what values of x is y = f(x) increasing?
  - (iv) From the graph, or otherwise, how many real solutions does  $x^3 3x^2 12 = 0$  have?

4

2

2

3

#### Question 2 (28 marks)

(a) Find the exact value of the following:  $(x) = \int_{-\infty}^{\frac{\pi}{2}} x \, dx$ 

(i) 
$$\int_0^2 \sin \frac{x}{2} dx$$

(ii) 
$$\int_2^6 \frac{dx}{2+x}$$

- (b) At what point on the curve  $y = \ln 2x$  is the gradient of the tangent  $\frac{1}{2}$ ?
- (c) For a certain continuous function f(x), f(2) = 2 and f'(2) = -1. If  $g(x) = x \cdot f(x)$ , evaluate g'(2).
- (d) Find the volume of the solid of revolution when the area bound by the curve  $y = x^2 + 1$ , the x-axis, the y-axis and the line x = 3 is rotated about the x-axis.

(e) The graph of y = f(x) where  $f(x) = e^{\frac{x}{2}} + 1$  is shown below. The normal to the graph of y = f(x) where it crosses the y-axis is also shown.



- (i) Find the equation of the normal to the graph of y = f(x) where it crosses the y axis.
- (ii) Find the exact area of the shaded region.

(f) If 
$$\int_{1}^{3} (2f(x) + 5)dx = 8$$
 determine the exact value of  $\int_{1}^{3} f(x)dx$ . 2

(g) The graph of y = x(x-1)(x-2) is given below.



- (i) Expand and simplify x(x-1)(x-2)
- (ii) Show that y = x(x-1)(x-2) has an inflexion point when x = 1.

(iii) Show that 
$$\int_0^2 x(x-1)(x-2)dx = 0$$

(iv) 
$$\int_0^1 x(x-1)(x-2)dx = \frac{1}{4}.$$
  
Without evaluating the integral what is the value of  $\int_1^2 x(x-1)(x-2)dx$ ?

- (h) A particle moves in a straight line in such a way that its displacement in metres from the origin after t seconds is given by  $x = 2t^3 + 3t^2 - 36t + 10$ .
  - (i) In which direction is the particle moving initially?
  - (ii) When does the particle come to rest?
  - (iii) What is the displacement of the particle after 3 seconds?
  - (iv) What distance has the particle travelled in the first 3 seconds?

6

|4|

(Use a SEPARATE writing booklet)

#### Question 3 (28 marks)

(a) The functions  $y = 4 - x^2$  and  $y = x^2 - 2x$  are sketched below on the same axes.



- (i) Copy the above sketch into your answer booklet and label where each function meets the x and y axes.
- (ii) Find the points of intersection of the two functions.
- (iii) Shade on your diagram in part (i) the region which satisfies the following inequalities:  $y \ge x^2 2x, y \le 4 x^2, y \ge 0$
- (iv) Calculate the area of the shaded region.

(b) (i) Show that  $\sec^2 x + \tan^2 x = 2 \sec^2 x - 1$ 

(ii) By writing  $\sec x$  as  $(\cos x)^{-1}$  show that  $\frac{d(\sec x)}{dx} = \sec x \tan x$ 

(iii) Hence, or otherwise, find  $\int (\sec x + \tan x)^2 dx$ 

(c) (i) Copy and complete the table in your answer booklet

| x              | 0 | $\frac{1}{2}$ | 1 |
|----------------|---|---------------|---|
| $\sqrt{2-x^2}$ |   |               |   |

- (ii) Use Simpson's Rule with three function values to approximate  $\int_0^1 \sqrt{2-x^2} dx$  to 2 decimal places.
- (iii) By considering the area below, find the exact value of  $\int_0^1 \sqrt{2-x^2} dx$



(d) A plastic brick is made in the shape of a right triangular prism. The triangular end is an equilateral triangle with side length x cm and the length of the brick is y cm.



The volume of the brick is  $1000 \text{ cm}^3$ .

- (i) Show that the area of the equilateral triangle is given by  $\frac{\sqrt{3}x^2}{4}$ .
- (ii) Find an expression for y in terms of x.
- (iii) Show that the total surface area,  $A \text{ cm}^2$ , of the brick is given by

$$A = \frac{4000\sqrt{3}}{x} + \frac{\sqrt{3}x^2}{2}.$$

(iv) Find the value of x for which the brick has minimum total surface area.

- (e) A(5,20), B(30,15), C(20,-10) and D are the vertices of a quadrilateral ABCD. Given that the diagonals AC and BD are perpendicular.
  - (i) Prove that the point D lies on the line  $y = \frac{x}{2}$ .
  - (ii) If also AB = AD, prove that the coordinates of D are (-6, -3).
  - (iii) Prove that AC bisects BD.
  - (iv) What type of quadrilateral is ABCD?

End of paper

Mathematics  $= -2x\sin 2x - \cos 2x$ (i) $\chi^2$ 3 2010 assessment 2  $1 - 2\ln x$ v.d 1: Juestion du  $-2 \ln x$ x - 2150 180  $Q.5\pi$  $(\overline{1}$  $\mathfrak{X}$ 1-2/nd 6  $\pi$  $\widehat{}$ (3/2) = 0.405465108.i. 10g 100 dx e .i = (0.41 (2dp)) $(\mathbf{i})$ 101 ii.  $\sin 2^{\circ} = 0.9092974268$  $(\widehat{})$ +C ().91 (2dp) (1)101 first instance tor esinor einx)3 no + c on3  $\widehat{(}$ = 1.e.100x e'oox dx ĥ. tC 2x<sup>2</sup> - 4x 1) di d ĩ <u>00</u>i da ĩii.  $100 \propto dx =$ J100 - J2 du = 200522 22 ii. d  $2 \sin x^2$ 10x12 du dr 7  $=43(\cos x^2)$  $\widehat{}$ 312 INX 10  $\frac{2(e^{*i-2x})}{2e}$ 1-22 in. d  $\rho$ 3/2 312 da  $\bigcap$ +C5 <u>cos 2</u>2 iv d - U  $100 + x^2 dx$ ì<u>v.</u>  $100 + x^2 dx$ dx - V X 32  $\mathcal{X}^{2}$  $(100x^{-2})$ <u>vu' - uv</u> de +1  $v^2$ da  $+\mathcal{X}$  +(  $U = \cos 2\lambda$ V= X V'=1 U' = -2sin2zL+C = x - 1002 36

f. L=ro f(0) = 0 - 0 - 12 = -12 $f(2) = 2^3 - 3(2)^2 - 12 = -16$  $\Theta = 30^{\circ} = \pi^{\circ}$ ... stat points are 8=1×K (2)\_16 2, -12 1 d 48 3. <u>(=</u> (0, -12)f(x)-2  $9.1.4\cos x + 2 = 0$ <u>J. Max.</u>  $0 \le \alpha \le 2\pi$ 2,-16)  $4\cos \alpha = -2$  $\frac{\cos x}{12} = -\frac{1}{2}$ X R A 3 2 (1) r'(2) -3 9 : min  $y = 4\cos \alpha$ <u>ii</u> π 27 -12 in f(x) is increasing 2 20 2 ٦ 4713 27 solution  $\widehat{()}$ 1 ì٧.  $\frac{h_{11}}{f(x)} = \frac{x^3 - 3x^2 - 12}{5x^2 - 6x}$ points frai = 0 for stat  $3x^2 - 6x = 0$ 3x(x-2)=0 $\mathcal{D} = \mathcal{O}$ 

$$\begin{array}{l} & 02 \ (a)(i) \int_{0}^{t} y \sin \frac{x}{2} \, dx = \left[ -2 \cos \frac{x}{2} \right]_{0}^{t} \\ & = -2 \left[ \cos \frac{x}{4} - \cos 0 \right] \\ & = -2 \left[ \sin - 1 \right] \\ & = -2 - \sqrt{2} \\ & (ii) \int_{2}^{t} \frac{dx}{2 + c} = \left[ 4\omega (x + 2) \right]_{2}^{t} \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega 4 \right] \\ & = 4\omega \left[ 8 - 4\omega$$

 $(d) \quad y = x^{\nu} + 1$ When x = 3, y = 10« lequined volume = Tr [3 y2 drc



(e) (i) 
$$y = e^{\frac{x}{2}} + 1$$
  
 $y' = \frac{1}{2}e^{\frac{x}{2}}$   
 $M = 0, \quad y' = \frac{1}{2}e^{\circ} = \frac{1}{2}$   
 $a^{\circ} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = -2$   
 $At = 0, \quad y = e^{\circ} + 1 = 2$   
 $a^{\circ} = \frac{1}{2} + 1 = 2$   
 $a^{\circ} = \frac{1}{2} + 1 = 2$   
 $a^{\circ} = \frac{1}{2} + 1 = 2$   
 $(i) \text{ Requised area } = \int_{0}^{1} (e^{\frac{x}{2}} + 1) dx - \int_{0}^{1} (-2e^{\frac{x}{2}}) dx$   
 $= \int_{0}^{1} (e^{\frac{x}{2}} + 1 + 2x - 2) dx$   
 $= \int_{0}^{1} (e^{\frac{x}{2}} + 1 + 2x - 2) dx$   
 $= \int_{0}^{1} (e^{\frac{x}{2}} + 1 - 1) dx$   
 $= [2e^{\frac{1}{2}} + 1 - 1] - [2e^{\circ} + 100]$   
 $= (2e^{\frac{1}{2}} - 2) \text{ sq. units}$ 

(1)  $\int_{1}^{3} [2f(x) + 5] dx = 8$  $\int_{1}^{3} 2f(c) dc + \int_{1}^{3} Sdc = 8$  $ie 2 \int_{1}^{3} f(x) dx + [5x]_{1}^{3} = 8$  $2(^{3}f(x)dx + [15-5]=8$ ie 2(f(G))dx = 8-10 $ie \int_{1}^{3} f(br) dx = -1.$ 

(9)  $y = -\frac{1}{2}$ (i)  $y = -\frac{1}{2}(x^{2}-3x+2)$  $-\frac{3}{-3x^{2}}+2$ y = x(x-1)(x-2) $=\chi^3-3\chi^2+2z$  $(\ddot{u}) y' = 3x^{2} - 6x + 2$ y' = 6x - 6 $y''=0 \rightarrow 6x-6=0 \rightarrow x=1.$ "Rossible point of inflexion at x=1.Check for change of sign of f(x) x 0 1 2 at 2=1. I f (x) x 0 1 2 - 0 + ie there is a change of sight i. (iii)  $\int_{0}^{2} (x^{3} - 3x^{2} + 2x) dx = \begin{bmatrix} x^{4} - x^{4} + x^{2} \end{bmatrix}_{0}^{2}$  $= []_{4}^{16} - 8 + 4] - [0]$ 4-8+4 (iv) Now ("f(x) dr= (f(be) drc + (f(b)) dr But lof(x) dec = 0 [from iii] and lof(s) de = + [given ...,  $\int_{1}^{r} f(x) dx$  must be  $-\frac{1}{4}$ .

(h) 
$$x = 2t^3 + 3t^7 - 36t + 10.$$
  
(i)  $x' = 6t^7 + 6t - 36.$   
When  $t=0$ ,  $x' = -36$  (ie  $x'$  is negative)  
is Particle is noving to the left.  
(ii)  $x' = 0 \rightarrow 6t^7 + 6t - 36 = 0$   
is  $t^7 + t - 6 = 0$   
is starsely the interval is  $t^7 + t^7 + t^7 + 6t^7 + 10^7$   
is  $t^7 + t^7 + 10^7$   
is  $t^7 + t^7 + 10^7$   
is  $t^7 +$ 

$$= \frac{5inx}{correc} = \frac{5inx}{$$

.

.

 $\langle S \rangle$ 

$$(d) (1) \quad A = e^{-\frac{1}{2}} \frac{1}{x^2} x^2 \cdot \sin \frac{\pi}{3}$$

$$= \frac{(3)x^3}{4}$$

$$(i) \quad \forall e^{-\frac{\pi}{4}} = 1000 = \frac{\sqrt{3}x^3}{4} \times \frac{\pi}{3} \cdot \frac{\pi}{4}$$

$$(i) \quad \forall e^{-\frac{\pi}{4}} = 1000 = \frac{\sqrt{3}x^3}{\sqrt{3}x^3} \times \frac{\pi}{3} + 2x \cdot \frac{\sqrt{3}x^3}{4}$$

$$(ii) \quad A^{\frac{1}{4}} = 3x \cdot \frac{4\pi00}{(3x^3)^2} \times x + 2x \cdot \frac{\sqrt{3}x^3}{4}$$

$$= \frac{4\pi00}{5x} \cdot \frac{\sqrt{3}x^3}{x^2} + \frac{\sqrt{3}x}{2x}$$

$$(ii) \quad E^{-\frac{\pi}{4}} = \frac{4\pi00}{5x} \cdot \frac{\sqrt{3}x^3}{x^2} + \frac{\sqrt{3}x}{x^2} = 0$$

$$(ii) \quad E^{-\frac{\pi}{4}} = \frac{4\pi00}{5x} \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}x = 0$$

$$(ii) \quad E^{-\frac{\pi}{4}} = \frac{4\pi00}{5x} \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}x = 0$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}$$

$$(i) \quad E^{-\frac{\pi}{4}} = 4\pi00 \cdot \frac{\sqrt{3}x^{-1}}{x^2} + \sqrt{3}x^2} + \sqrt{3}x^2 + \sqrt{3}x^2} + \sqrt{3}x^2 + \sqrt{3}x^2} + \sqrt{3}x^2} + \sqrt{3}x^2 + \sqrt{3}x^2} + \sqrt{3}x^2} + \sqrt{$$

$$(i) \qquad m_{AC} = \frac{32}{-15} = -2.$$

$$m_{BD} = \frac{15 - y_1}{30 - x_1}$$

$$m_{AC} \times m_{BD} = -1.$$

$$(1) -2 \times \frac{15 - y_1}{30 - x_1} = -1$$

$$(1) -2 \times \frac{15 - y_1}{30 - x_1} = -1$$

$$(1) -2 \times \frac{15 - y_1}{30 - x_1} = \frac{1}{2}$$

$$(1) -2 \times \frac{15 - y_1}{30 - x_1} = \frac{1}{2}$$

$$(1) -2 \times \frac{15 - y_1}{30 - x_1} = \frac{1}{2}$$

$$(1) -2 \times \frac{15 - y_1}{30 - x_1} = \frac{1}{2}$$

$$(1) -3 - \frac{1}{2} = \frac{1}{2} \times 1.$$

$$(1) -$$

•

•••

.

 $(ii) m M_{BI} = (12, 6) = M$  $m_{AM} = \frac{20-6}{5-12} = -2 = m_{AC}$ 2 i m lies on te . AC birects BD (iv) ABCD it a kite