SYDNEY BOYS HIGH SCHOOL modre pari, surry hills

2010

YEAR 12

ASSESSMENT TASK \#3

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 120 Minutes
- Write using black or blue pen. Pencil may be used for diagrams
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise stated.
- Full marks may not be awarded for careless or badly arranged work.

Total Marks - 82

- Attempt questions 1 - 3
- All questions are NOT of equal value.
- Each question is to be returned in a separate bundle.

Examiner: A. Fuller

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0
\end{aligned}
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

NOTE: $\ln x=\log _{e} x, x>0$

Attempt questions 1 to 3
Answer each Question in a Separate writing booklet
(Use a SEPARATE writing booklet)

Question 1 (26 marks)
(a) Express $\frac{5 \pi}{6}$ in degrees.
(b) Find the following correct to 2 decimal places:
(i) $\log _{e} \frac{3}{2}$
(ii) $\sin 2^{c}$
(c) Simplify $e^{3 \ln x}$
(d) Differentiate the following with respect to x :
(i) $1-2 x^{2}$
(ii) $2 \sin x^{2}$
(iii) $e^{1-2 x}$
(iv) $\frac{\cos 2 x}{x}$
(v) $(1-2 \ln x)^{2}$
(e) State a primitive (indefinite integral) of:
(i) x^{100}
(ii) $e^{100 x}$
(iii) $\sqrt{100 x}$
(iv) $\frac{100+x^{2}}{x^{2}}$
(f) Find the radius of a sector which has an arc length of 8 cm that subtends an angle of 30° at the centre.

(g) (i) Find all the values for x for which $4 \cos x+2=0$ where $0 \leq x \leq 2 \pi$.
(ii) Hence sketch the graph $y=4 \cos x+2$ for $0 \leq x \leq 2 \pi$ marking clearly where it intersects with the x and y axes.
(h) A function is defined by $f(x)=x^{3}-3 x^{2}-12$.
(i) Find the coordinates of the stationary points of the graph $y=f(x)$, and determine their nature.
(ii) Hence sketch the graph of $y=f(x)$.
(iii) From the graph, or otherwise, for what values of x is $y=f(x)$ increasing?
(iv) From the graph, or otherwise, how many real solutions does $x^{3}-3 x^{2}-12=0$ have?
(Use a SEPARATE writing booklet)

Question 2 (28 marks)

(a) Find the exact value of the following:
(i) $\int_{0}^{\frac{\pi}{2}} \sin \frac{x}{2} d x$
(ii) $\int_{2}^{6} \frac{d x}{2+x}$
(b) At what point on the curve $y=\ln 2 x$ is the gradient of the tangent $\frac{1}{2}$?
(c) For a certain continuous function $f(x), f(2)=2$ and $f^{\prime}(2)=-1$.

If $g(x)=x \cdot f(x)$, evaluate $g^{\prime}(2)$.
(d) Find the volume of the solid of revolution when the area bound by the curve $y=x^{2}+1$, the x-axis, the y-axis and the line $x=3$ is rotated about the x-axis.
(e) The graph of $y=f(x)$ where $f(x)=e^{\frac{x}{2}}+1$ is shown below. The normal to the graph of $y=f(x)$ where it crosses the y-axis is also shown.

(i) Find the equation of the normal to the graph of $y=f(x)$ where it crosses the y axis.
(ii) Find the exact area of the shaded region.
(f) If $\int_{1}^{3}(2 f(x)+5) d x=8$ determine the exact value of $\int_{1}^{3} f(x) d x$.
(g) The graph of $y=x(x-1)(x-2)$ is given below.

(i) Expand and simplify $x(x-1)(x-2)$
(ii) Show that $y=x(x-1)(x-2)$ has an inflexion point when $x=1$.
(iii) Show that $\int_{0}^{2} x(x-1)(x-2) d x=0$
(iv) $\int_{0}^{1} x(x-1)(x-2) d x=\frac{1}{4}$.

Without evaluating the integral what is the value of $\int_{1}^{2} x(x-1)(x-2) d x$?
(h) A particle moves in a straight line in such a way that its displacement in metres from the origin after t seconds is given by $x=2 t^{3}+3 t^{2}-36 t+10$.
(i) In which direction is the particle moving initially?
(ii) When does the particle come to rest?
(iii) What is the displacement of the particle after 3 seconds?
(iv) What distance has the particle travelled in the first 3 seconds?
(Use a SEPARATE writing booklet)

Question 3 (28 marks)

(a) The functions $y=4-x^{2}$ and $y=x^{2}-2 x$ are sketched below on the same axes.

(i) Copy the above sketch into your answer booklet and label where each function meets the x and y axes.
(ii) Find the points of intersection of the two functions.
(iii) Shade on your diagram in part (i) the region which satisfies the following inequalities: $y \geq x^{2}-2 x, y \leq 4-x^{2}, y \geq 0$
(iv) Calculate the area of the shaded region.
(b) (i) Show that $\sec ^{2} x+\tan ^{2} x=2 \sec ^{2} x-1$
(ii) By writing $\sec x$ as $(\cos x)^{-1}$ show that $\frac{d(\sec x)}{d x}=\sec x \tan x$
(iii) Hence, or otherwise, find $\int(\sec x+\tan x)^{2} d x$
(c) (i) Copy and complete the table in your answer booklet

x	0	$\frac{1}{2}$	1
$\sqrt{2-x^{2}}$			

(ii) Use Simpson's Rule with three function values to approximate $\int_{0}^{1} \sqrt{2-x^{2}} d x$ to 2 decimal places.
(iii) By considering the area below, find the exact value of $\int_{0}^{1} \sqrt{2-x^{2}} d x$

(d) A plastic brick is made in the shape of a right triangular prism. The triangular end is an equilateral triangle with side length $x \mathrm{~cm}$ and the length of the brick is $y \mathrm{~cm}$.

The volume of the brick is $1000 \mathrm{~cm}^{3}$.
(i) Show that the area of the equilateral triangle is given by $\frac{\sqrt{3} x^{2}}{4}$.
(ii) Find an expression for y in terms of x.
(iii) Show that the total surface area, $A \mathrm{~cm}^{2}$, of the brick is given by

$$
A=\frac{4000 \sqrt{3}}{x}+\frac{\sqrt{3} x^{2}}{2} .
$$

(iv) Find the value of x for which the brick has minimum total surface area.
(e) $A(5,20), B(30,15), C(20,-10)$ and D are the vertices of a quadrilateral $A B C D$.

Given that the diagonals $A C$ and $B D$ are perpendicular.
(i) Prove that the point D lies on the line $y=\frac{x}{2}$.
(ii) If also $A B=A D$, prove that the coordinates of D are $(-6,-3)$.
(iii) Prove that $A C$ bisects $B D$.
(iv) What type of quadrilateral is $A B C D$?

End of paper

Mathematics
assessment 3,2010
Question 1:

$$
\frac{\operatorname{di} \cdot \frac{d}{d x}\left(1-2 x^{2}\right)=-4 x}{}
$$

$$
\text { ii. } \frac{d}{d x}\left(2 \sin x^{2}\right)=2 \cos x^{2} \times 2 x
$$

$$
\begin{equation*}
=4 x \cos x^{2} \tag{1}
\end{equation*}
$$

$$
\text { iii. } \mathbf{d}\left(e^{i-2 x}\right)=-2\left(e^{m+2 x}\right)
$$

$$
\frac{d x}{} \quad=-2 e^{-2 x}
$$

$\frac{\operatorname{iv} \frac{d}{d x}\left(\frac{\cos 2 x}{x}\right)-u}{-v}$

$$
\frac{d}{d x}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}
$$

$$
u=\cos 2 x \quad v=x
$$

$$
u^{\prime}=-2 \sin 2 x \quad v^{\prime}=1
$$

$$
\begin{align*}
& \text { b.i. } \begin{aligned}
\log _{e}(3 / 2) & =0.4054651081 \\
& =0.41(2 d p)
\end{aligned} \\
& \begin{aligned}
& \text { b.i. } \log _{e}(3 / 2)=0.4054651081 \\
&=0.41(2 d p) \\
& \text { ii. } \sin 2^{c}=0.9092974268
\end{aligned} \\
& \begin{aligned}
& \text { b.i. } \log _{e}(3 / 2)=0.405465108 \\
&=0.41(2 d p) \\
& \text { ii. } \sin 2^{c}=0.9092974268
\end{aligned} \\
& =0.91 \text { (2dp) (1) } \\
& \text { C. } e^{3 \ln x}=\left(e^{\ln x}\right)^{3} \\
& =x^{3} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { a. } \frac{5 \pi}{6} \times \frac{180}{\pi}=150^{\circ} \tag{i}\\
& \text { b.i. } \begin{aligned}
\log _{e}(3 / 2) & =0.4054651081 \\
& =0.41(2 d p)
\end{aligned} \\
& \begin{aligned}
& \text { b.i. } \log _{e}(3 / 2)=0.4054651081 \\
&=0.41(2 d p) \\
& \text { ii. } \sin 2^{c}=0.9092974268
\end{aligned} \\
& \begin{aligned}
& \text { b.i. } \log _{e}(3 / 2)=0.405465108 \\
&=0.41(2 d p) \\
& \text { ii. } \sin 2^{c}=0.9092974268
\end{aligned} \\
& =0.91 \text { (2dp) (1) }
\end{align*}
$$

$$
\begin{equation*}
=\frac{-2 x \sin 2 x-\cos 2 x}{x^{2}} \tag{1}
\end{equation*}
$$

$$
\text { V. } \begin{align*}
\text { V. } \frac{d}{d x} & (1-2 \ln x)^{2} \\
& =2(1-2 \ln x) \times-\frac{2}{x} \\
& =-\frac{4}{x}(1-2 \ln x) \tag{1}\\
e . i & \int x^{100} d x \\
& =\frac{x^{101}}{101}+c \tag{1}
\end{align*}
$$

-1 for first instonce of no $+c$ only

$$
\text { ii. } \int e^{100 x} d x=\frac{1}{100} e^{100 x}+C
$$

$$
\text { iii. } \begin{aligned}
\int \sqrt{100 x} d x & =\int \sqrt{100} \cdot \sqrt{x} d x \\
& =\int 10 x^{1 / 2} d x \\
& =\frac{10 x^{3 / 2}+c}{3 / 2} \\
& =\frac{20 x^{3 / 2}}{3}+C
\end{aligned}
$$

$$
\text { iv. } \begin{align*}
\int \frac{100+x^{2}}{x^{2}} d x & =\int \frac{100}{x^{2}}+\frac{x^{2}}{x^{2}} \\
& =\int\left(100 x^{-2}+1\right) d x \\
& =\frac{100 x^{-1}+x+c}{-1} \\
& =x-\frac{100+c}{x} \tag{2}
\end{align*}
$$

f.

$$
\begin{align*}
& \text { f. } l=r \theta \\
& \theta=30^{\circ}=\frac{\pi^{c}}{6} \\
& \theta=r \times \frac{\pi}{6} \tag{2}\\
& \therefore r=\frac{48}{\pi} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& f(0)=0-0-12=-12 \\
& f(2)=2^{3}-3(2)^{2}-12=-16
\end{aligned}
$$

\therefore stat points are $(0,-12)$ d $(2,-16)$
$(0,-12)$

$$
\text { gi. } 4 \cos x+2=0
$$

x	-1	0	1				
$f^{\prime}(x)$	7	0	-3				
$/$							
1						-1	\therefore max.

$$
0 \leqslant x \leqslant 2 \pi
$$

$(2,-16)$

$$
\begin{align*}
& 4 \cos x=-2 \\
& \cos x=-1 / 2 \tag{1}\\
& \therefore x=1 / 3, \quad \overline{4 \pi / 3} \quad \overline{\bar{X}} \mid \mathrm{A}
\end{align*}
$$

x	1	2	3
$f^{\prime}(x)$	-3	0	9

$$
1-1 \quad \therefore \min
$$

iii. $f(x)$ is increasing
(2) for $x<0, \quad x>2$
iv. I solution
ni $f(x)=x^{3}-3 x^{2}-12$

$$
f^{\prime}(x)=3 x^{2}-6 x
$$

for stat. points $f^{\prime}(x)=0$

$$
\begin{aligned}
& \therefore \quad 3 x^{2}-6 x=0 \\
& 3 x(x-2)=0 \\
& \therefore x=0,2
\end{aligned}
$$

$$
\begin{aligned}
\frac{Q 2}{2}(a)(i) \int_{0}^{\frac{\pi}{2}} \sin \frac{x}{2} d x & =\left[-2 \operatorname{asc} \frac{x}{2}\right]_{0}^{\frac{\pi}{2}} \\
& =-2\left[\cos \frac{\pi}{4}-\cos 0\right] \\
& =-2\left[\frac{1}{\sqrt{2}}-1\right] \\
& =2-\sqrt{2} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{2}^{6} \frac{d x}{2+x} & =[\ln (x+2)]_{2}^{6} \\
& =\ln 8-\ln 4 \\
& =\ln \frac{8}{4} \\
& =\ln 2
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=\ln 2 x \\
& y^{\prime}=2 \cdot \frac{1}{2 x}=\frac{1}{x}
\end{aligned}
$$

Whew $y^{\prime}=\frac{1}{2}, \frac{1}{x}=\frac{1}{2} \rightarrow x=2$
$\therefore \operatorname{Point}$ is $(2, \ln 4)$
(c)

$$
\begin{gathered}
f(2)=2 \quad f^{\prime}(2)=-1 \\
g(x)=x * f(x)
\end{gathered}
$$

\therefore By hoduct kule $g^{\prime}(x)=f(x) \times 1+x \times f^{\prime}(x)$

$$
\begin{aligned}
\therefore g^{\prime}(2) & =f(2)+2 f^{\prime}(2) \\
& =2+2 x-1 \\
& =0
\end{aligned}
$$

(d) $y=x^{2}+1$ When $x=3, y=10$

$$
\begin{aligned}
\therefore \text { Requined velume } & =\pi \int_{0}^{3} y^{2} d x \\
& =\pi \int_{0}^{3}\left[x^{2}+1\right]^{2} d x \\
& =\pi \int_{0}^{3}\left(x^{4}+2 x^{2}+1\right) \\
& =\pi\left[\frac{x^{5}}{5}+\frac{2}{3} x^{3}+x\right]_{0}^{3} \\
& =\pi\left\{\left[\frac{243}{5}+\frac{2}{3} \cdot 27+3\right]-10\right\} \\
& =\pi^{2}\left\{48^{3} \frac{3}{5}+18+3\right\}
\end{aligned}
$$

$=69 \frac{3}{5}^{3} \pi$ cuhic unts
(e) (i)

$$
\begin{aligned}
& y=e^{\frac{x}{2}}+1 \\
& y^{\prime}=\frac{1}{2} e^{\frac{x}{2}}
\end{aligned}
$$

At $x=0, y^{\prime}=\frac{1}{2} e^{0}=\frac{1}{2}$.

$$
\therefore M_{\text {TAMEAT }}=\frac{1}{2} \rightarrow M_{\text {NORMALL }}=\frac{-2}{1}=-2
$$

At $x=0, y=e^{0}+1=2$
\therefore Equation of momnal is $y=-2 x+2$

$$
\text { ie } 2 x+y-2=0
$$

(ii) Requined area $=\int_{0}^{1}\left(e^{\frac{x}{2}}+1\right) d x-\int_{0}^{1}(-2 x+2) d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left(e^{\frac{x}{2}}+1+2 x-2\right) d x \\
& =\int_{0}^{1}\left(e^{\frac{x}{2}}+2 x-1\right) d x \\
& =\left[2 e^{\frac{x}{2}}+x^{2}-x\right]_{0}^{1} \\
& =\left[2 e^{\frac{1}{2}}+1^{2}-1\right]-\left[2 e^{0}+0-0\right. \\
& =\left(2 e^{\frac{1}{2}}-2\right) \text { sq. unts }
\end{aligned}
$$

(f)

$$
\begin{aligned}
& \text { f) } \int_{1}^{3}[2 f(x)+5] d x=8 \\
& \therefore \int_{1}^{3} 2 f(x) d x+\int_{1}^{3} s d x=8 \\
& \text { ie } 2 \int_{1}^{3} f(x) d x+[5 x]_{1}^{3}=8 \\
& 2 \int_{1}^{3} f(x) d x+[15-5]=8 \\
& \text { ie } 2 \int_{1}^{3} f(x) d x=8-10 \\
&=-2 \\
& \text { ie } \int_{1}^{3} f(x) d x=-1 .
\end{aligned}
$$

(9) $y=x(x-1)(x-2)$
(i)

$$
\begin{aligned}
y & =x\left(x^{2}-3 x+2\right) \\
& =x^{3}-3 x^{2}+2 x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y^{\prime}=3 x^{2}-6 x+2 \\
& y^{\prime \prime}=6 x-6
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}=0 \rightarrow 6 x-6=0 \rightarrow x=1 . \\
& \therefore \text { Possible point of inflexion at } x=
\end{aligned}
$$

\therefore Possible point of inflexion at $x=1$.
Che k for change of sign of $f^{\prime \prime}(x)$
at $x=1$.

x	0	1
	-	0

ie hone is a chase pl sign
$\therefore f(x)$ has point of inllexcow at $x=1$
(iii)

$$
\begin{aligned}
\therefore \int_{0}^{2}\left(x^{3}-3 x^{2}+2 x\right) d x & =\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{2} \\
& =\left[\frac{16}{4}-8+4\right]-[0] \\
& =4-8+4 \\
& =0
\end{aligned}
$$

(iv) $d x \int_{0}^{2} f(x) d x=\int_{0}^{1-} f(x) d x+\int_{1}^{2} f(x) d x$ But $\int_{0}^{2} f(x) d x=0$ firn iii $]$ and $\int_{0}^{1} f(x) d x=\frac{1}{4}[$ given $\therefore \int_{1}^{2} f(x) d x$ aust be $-\frac{1}{4}$.
(h) $x=2 t^{3}+3 t^{2}-36 t+10$.

$$
\text { (i) } x^{\prime}=6 t^{2}+6 t-36 \text {. }
$$

coles $t=0, x^{\prime}=-36$ (ie x^{\prime} is negative)
\therefore Particle is moving to the left.
(ii)

$$
\begin{array}{r}
x^{\prime}=0 \rightarrow 6 t^{2}+6 t-36=0 \\
1 e t^{2}+t-6=0 \\
\therefore(t+3)(t-2)=0 \\
1 e t=-3,2
\end{array}
$$

But $t \geq 0, \therefore$ hentide cones to rest when $t=2$
(iii) when $t=3$,

$$
\begin{aligned}
x & =54+27-108+10 \\
& =91-108 \\
& =-17
\end{aligned}
$$

ie Particle has moved from -34 to -12 in , the 3 rod sec
\therefore Pantile has travelled 12 metros i 3 ad second
\therefore Distance travelled h list 3 sees $=44+17=61 \mathrm{~m}$
$3(i)$
(i)

(ii)

$$
\begin{aligned}
& 4-x^{2}=x^{2}-2 x \\
& 2 x^{2}-2 x-4=0 \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x^{2}=2 \quad x=-1
\end{aligned}
$$

Point if intersection $(2,0),(-1,3)$
(iv)

$$
\begin{aligned}
A & =\int_{-1}^{0}\left(\left(4-x^{2}\right)-\left(x^{2}-2 x\right)\right) d x+\int_{0}^{2}\left(4-x^{2}\right) d x \\
& =\int_{-1}^{0}\left(4+2 x-2 x^{2}\right) d x+\int_{0}^{2}\left(4-x^{2}\right) d x \\
& =\left[4 x+x^{2}-\frac{2}{3} x^{3}\right]-7+\left[4 x-\frac{1}{3} x^{3}\right]_{0}^{2} \\
& =[0]-\left[-4+\frac{4}{4}+\frac{8}{3}\right]+\left[8-\frac{p}{3}\right]-[0] \\
& =2 \frac{1}{3}+5 \frac{1}{3} \\
& =7 \frac{2}{3} 4 x^{2}
\end{aligned}
$$

b) (i)

$$
\begin{aligned}
\sec ^{2} x+\operatorname{tac}^{2} x & =\sec ^{2} x+\sec ^{2} x-1 \\
& =2 \sec ^{2} x-1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d}{d x}(\sec x) & =\frac{d}{d x}\left((\cos x)^{-1}\right) \\
& =-1(\cos x)^{-2},-\sin x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sin x}{\cos ^{2} x} \\
& =\tan x \cdot \sec x .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \int(\sec x+\tan x)^{2} d x \\
= & \int\left(\sec ^{2} x+2 \sec x \tan x+\tan ^{2} x\right) d x \\
= & \int\left(2 \sec ^{2} x+2 \sec x \tan x-1\right) d x \\
= & 2 \tan ^{2} x+2 \sec x-x+c .
\end{aligned}
$$

(c)
(i)

x	0	$\frac{1}{2}$	1
$\sqrt{2-x^{2}}$	$\sqrt{2}$	$\frac{\sqrt{13}}{2}$	1

(ii)

$$
\begin{aligned}
\int_{0}^{1} \sqrt{2-x^{2}} d x & =\frac{\frac{1}{2}}{3}\left(\sqrt{2}+4 \cdot \frac{\sqrt{3}}{2}+1\right) \\
& =\frac{1}{6}(\sqrt{2}+2 \sqrt{7}+1) \\
& =1.284286 \cdots \\
& \approx 02881.28
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\int_{0}^{1} \sqrt{2-x^{2}} d x & =\frac{1}{2} \cdot(\sqrt{2})^{2} \cdot \frac{2}{4}+\frac{1}{2} x^{1} \times 1 \\
& =\frac{\pi}{4}+\frac{1}{2} \\
& (\Leftrightarrow 1.28539 \ldots)
\end{aligned}
$$

(d) (i) A. A of $\Delta=\frac{1}{2} x^{2} \cdot \sin \frac{\pi}{3}$

$$
=\frac{\sqrt{3} 2 x^{2}}{4}
$$

(ii) Volue $=1000=\frac{\sqrt{3} x^{2}}{4} \times y$.

$$
\therefore y=\frac{40003}{\sqrt{3} x^{2}}
$$

(iii) $A=3 \times \frac{4000}{\sqrt{3} x^{2}} \times x+2 \times \frac{\sqrt{3} x^{2}}{4}$

$$
=\frac{4000 \sqrt{3}}{x}+\frac{\sqrt{3} x^{2}}{2}
$$

(iv) Ei min $\frac{d(s A)}{d / 2}=0$.
$\frac{d A}{d x}=-4000 \sqrt{3} x^{-2}+\sqrt{3} x \therefore 4000 \sqrt{3} \times-1 x^{-2}+\sqrt{3} x=0$.

$$
\begin{aligned}
& \therefore \sqrt{3} x^{3}-4000 \sqrt{3}=0 \\
& \therefore x^{3}=4000 \\
& \therefore x=10 \sqrt[3]{4}
\end{aligned}
$$

$\frac{d^{2} A}{d x^{2}}=+8000 \sqrt{3} x^{-3}+\sqrt{3}$.
whe $x=10 \sqrt[3]{4}, \frac{d^{2} A}{d \alpha^{2}}>0$
\therefore thin sumface oun whe $x=10 \sqrt[3]{4}$
(2)

$$
\begin{array}{ll}
x^{A(5,2=5)} & x^{B(3 c, 15)} \\
D(x, y) &
\end{array}
$$

$$
x_{c}(20,-10)
$$

(1)
(ii)

$$
\therefore 180=x_{1}^{2}-24 x
$$

$+1-180 \quad \therefore 180=x_{1}^{2}-24 x_{1}$

$$
\begin{aligned}
& x_{1}^{2}-24 x_{1}-180=0 \\
& \left(x_{1}+6\right)\left(x_{1}-35\right)=0
\end{aligned}
$$

$2-40 \quad x_{1}^{2}-24 x_{1}-180=0$
$3-60$. $\quad\left(x_{1}+L\right)\left(x_{1}-3=3\right)=0$
$4 \quad-45 \quad \therefore x_{1}=-6 \quad \cos =30$
$5 \quad-36 \quad y_{1}=-3 \quad y_{1}=15$
$6 \quad-3=$

$$
\begin{aligned}
& A B=A D \\
& \sqrt{(30-5)^{2}+\left(15^{2}-20\right)^{2}}=\sqrt{\left(x_{1}-5\right)^{2}+\left(y_{1}-20\right)^{2}} \\
& \therefore \sqrt{625^{4}+25}=\sqrt{x_{1}^{2}-10 x_{1}+25+y_{1}^{2}-4 y_{1}+400} \\
& \therefore 650=x_{1}^{2}-10 x_{1}+25+\frac{1}{4} x_{1}^{2}-20 x_{1}+400 \\
& \therefore 225=\frac{5}{4} x_{1}^{2}-30 x_{1} \\
& \therefore 900=5 x_{1}^{2}-120 x_{1}
\end{aligned}
$$

\therefore 3) if $(-6,-3)$

$$
\begin{aligned}
& m_{\text {Ace }}=\frac{30}{-15}=-2 \\
& m_{B 3}=\frac{15-y_{1}}{30-x_{1}} \\
& m_{\text {se }} \times m_{\text {Bl }}=-1 . \\
& \therefore \quad-2 \times \frac{15-y_{1}}{30-x_{1}}=-1 \\
& \therefore \quad \frac{15-y_{1}}{30-x}=\frac{1}{2} \\
& \therefore \quad 15-y=15-\frac{1}{2} x, \\
& \therefore \quad y_{1}=\frac{1}{2} x_{1} \\
& \therefore D \text { lies on } y=\frac{1}{2} x
\end{aligned}
$$

(iii) $M_{B 1}=(12,6)=M$

$$
m_{A M}=\frac{20-6}{5-12}=-2=m_{A 2}
$$

$\therefore M$ lies on AE
$\therefore A C$ bisects BD
(iv) $A B C D$ ir a bite

