SYDNEYBOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2012

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#3

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 2 hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each Section (A, B, and C) is to be returned in a separate bundle.
- All necessary working should be shown in every question, except multiple choice.

Total Marks - 75

- Attempt questions 1-6.
- All questions are not of equal value.
- Unless otherwise directed give your answers in simplest exact form.

Examiner: A.M.Gainford

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec ^{a x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { NOTE }: \ln x=\log _{e} x, x>0
$$

Section A (22 Marks)

START A NEW BOOKLET

Question 1. (7 marks)
Indicate which of the answers A, B, C, or D is the correct answer. Write the letter corresponding to the answer in your answer booklet.
(a) Solve for $y: x y-d=m$:- \quad A: $\quad y=\frac{m-d}{x}$

B: $\quad y=m+d-x$
C: $y=\frac{m+d}{x}$
D: $\quad x y=m+d$
(b) Reduce the following expression to simplest form:

$$
\frac{12 a^{3} c}{4 a c}=
$$

A: $\quad 8 a^{2}$
B: $\quad 3 a^{2}$
C: $\quad 3 a^{3}$
D: $\quad 3 a^{3} c$
(c) The derivative of $y=6 x^{-3}$ equals:-

A: $\quad-18 x^{-4}$
B: $\quad-18 x^{-2}$
$\mathrm{C}: \quad-12 x^{-3}$
D: $\quad-3 x^{-2}$
(d) Find a primitive of $\frac{1}{2 x+3}$:-

A: $\frac{2}{(2 x+3)^{2}}$

B: $\quad \ln (2 x+3)$
C: $\quad \frac{1}{2} \ln (2 x+3)$
D: $\quad \ln (2 x)+3$
(e) If $(2,-3)$ is the midpoint of the interval joining $A(4,-2)$ and $B(x, y)$ then B has co-ordinates:-

A: $\quad(-4,0)$
B: $\quad(0,0)$
C: $\quad(0,-4)$
D: $\quad(0,-8)$
(f) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos 2 x d x=$

A: $\frac{1}{2}$
B: $\quad 0$
C: 1
D: $\quad-\frac{1}{2}$
(g) The derivative of $\ln \sqrt{1-x^{2}}$ is:-

A: $\frac{1}{2 \sqrt{1-x^{2}}}$
B: $\frac{-x}{1-x^{2}}$

C: $\quad \frac{-x}{\sqrt{1-x^{2}}}$

D: $\frac{x}{\sqrt{x^{2}-1}}$

Question 2 (15 marks)
(a) Differentiate the following: Marks
(a) Differentiate the following:
(i) $y=2 \tan 3 x$
(ii) $y=x \sin x$
(iii) $y=e^{\sin x}$
(iv) $y=\ln 4 x$
(b) Find
(i) $\quad \int\left(1-e^{x}\right)^{2} d x$
(ii) $\int_{\frac{1}{6}}^{\frac{1}{2}} \cos \pi x d x$
(c) Use the trapezoidal rule with four function values to find an approximation to

$$
\int_{-2}^{1} 2^{-x} d x
$$

(Answer correct to two decimal places.)
(d) The area enclosed between $y=2 x-x^{2}$ and $y=x$ is rotated about the x-axis.
(i) Find the points of intersection of the curves.
(ii) Find the volume of the solid generated.

Section B (26 Marks)

START A NEW BOOKLET
Question 3 (13 Marks)
(a) Find the area of a segment of a circle of radius 4 cm and angle at the centre 1.5 radians, correct to two decimal places.
(b) Simplify: $\frac{1}{\sec ^{2} x}+\frac{1}{\operatorname{cosec}^{2} x}$
(c) Sketch the graph of $y=3 \cos 2 x$ in the domain $0 \leq x \leq 2 \pi$.
(d) The graph shows $f^{\prime}(x)$, the derivative of $y=f(x)$.

(i) Copy the graph to your answer booklet.
(ii) Sketch on the graph a possible graph of $y=f(x)$ given that $f(x)>0$ for all x. On your graph of $y=f(x)$ mark any points of inflexion.
(e)

Find the area bounded by the curves $y=x^{3}+3, y=5-x^{2}$ and the x-axis.

Question 4 (13 Marks)

(a) For a function $f(x)$ it is given that $f(0)=4$ and $f(1)=12$. Find, in simplest form, the value of:

$$
\int_{0}^{1} \frac{f^{\prime}(x)}{f(x)} d x
$$

(b) Given the function $y=2+3 x-x^{3}$:
(i) Find the co-ordinates of the stationary points, and determine their nature.
(ii) Find the co-ordinates of any points of inflexion.
(iii) Sketch the curve in the domain $-3 \leq x \leq 3$.
(c) Find the equation of the normal to the curve $y=e^{-x}$ at the point where $x=1$.
(d) The Fundamental Theorem of the Integral Calculus is:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is a primitive of $f(x)$.

Use this theorem to prove that:

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

Section C (27 Marks)

START A NEW BOOKLET

Question 5 (13 Marks)

(a) A sphere of volume $V=\frac{4}{3} \pi r^{3}$ and surface area $A=4 \pi r^{2}$ is expanding at a constant rate. Find the ratio of the rate of change of volume with respect to r to the rate of change of surface area with respect to r.
(b) For the triangle with vertices $A(-3,0), B(2,4)$, and $C(6,-1)$:
(i) Show that the triangle is isosceles.
(ii) Find the area of the triangle.
(c)

In the diagram, D and E are the midpoints of $B C$ and $A D$ respectively, and $D G \| B F$.
(i) Copy the diagram to your answer booklet.
(ii) Prove that $A F=F G=G C$.

Question 6 (14 Marks)
(a) Simplify $\ln \left(\ln \sqrt{e^{4}}\right)$.
(b) A particle is moving in a straight line with acceleration given by $a=12 t \mathrm{~m} / \mathrm{s}^{2}$.

Initially the particle is at the origin with velocity $-8 \mathrm{~m} / \mathrm{s}$.
(i) Find the equation for its position at time t.
(ii) State when the particle is next at the origin.
(c)
(i) Find $\frac{d}{d x}\left(\frac{3}{x^{3}+1}\right)$.
(ii) The region of the number plane under the curve $y=\frac{3 x}{x^{3}+1}$, above the x axis, and between $x=0$ and $x=1$ is rotated about the x-axis. With the aid of part (i), find then volume of the solid formed.
(d) The volume of a closed cylindrical container is $800 \mathrm{~m}^{3}$. The container is to be made of aluminium sheeting costing $\$ 78$ per square metre.
(i) Show that, given the radius of the base is r, the area of aluminium required is

$$
A=2 \pi r^{2}+\frac{1600}{r}
$$

(ii) Find the minimum cost (to the nearest dollar) of the aluminium for making the container.
$Y_{R^{\prime}} 12$ Assessment Task 3-Mathe matics 20

QI.
a) C
b) B
d) C
e) C
c) A
g) B

QQ
a)

$$
\begin{aligned}
& \text {) } y=2 \tan 3 x \\
& y^{\prime}=6 \sec ^{2} 3 x
\end{aligned}
$$

ii)

$$
\begin{aligned}
& y=x \sin x \\
& y^{\prime}=\sin x(1) x(\cos x)
\end{aligned}
$$

iii) $y=e^{\sin x}$

$$
y^{\prime}=\cos x e^{\sin x}
$$

iv)

$$
\begin{aligned}
& y=\ln 4 x \\
& y^{\prime}=\frac{4}{4 x}=\frac{1}{x}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& \int\left(1-e^{x}\right)^{2} \cdot d x \\
= & \int\left(1-2 e^{x}+e^{2 x}\right) \cdot d x \\
= & x-2 e^{x}+\frac{e^{2 x}}{2}+C
\end{aligned}
$$

D) o ont ${ }^{2}$ of intersection

$$
\begin{aligned}
& 2 x-x^{2}=x
\end{aligned}
$$

b)

$$
\text { ii) } \begin{aligned}
& \int_{\frac{1}{6}}^{\frac{1}{2}} \cos \pi x \cdot d x \\
&= {\left[\frac{1}{\pi} \sin \pi x\right]_{\frac{1}{6}}^{\frac{1}{2}} } \\
&=\frac{1}{\pi}\left(\sin \frac{\pi}{6}-\sin \frac{\pi}{6}\right) \\
&= \frac{1}{\pi}\left(1-\frac{1}{2}\right) \\
&= \frac{1}{2 \pi}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
h & =\frac{b-a}{a} \quad n=3 \\
& =\frac{1-2}{3}=1
\end{aligned}
$$

$\int_{-2}^{1} 2^{-x} \cdot d x=\frac{1}{2}\left(y_{0}+y_{3}+2\left(y_{1}+y_{3}^{2}\right.\right.$
y_{2} -2 -1 0 1 y_{3} y 4 2 1 $\frac{1}{2}$

$$
=\frac{1}{2}\left(4+\frac{1}{2}+2(2+1)\right) .
$$

$$
=\frac{1}{2}\left(10 \frac{1}{2}\right)
$$

$$
\doteqdot 5 \cdot 25
$$

d) $V=\pi=\int\left(2 x-x^{2}\right)^{2} d x-\pi \int x^{2} \cdot d x$
$=\pi \int\left(4 x^{2}-4 x^{3}+x^{4}\right) \cdot d x-\pi x^{2} \cdot d:$
$=\pi\left[\frac{4}{3} x^{3}-4 x^{4}+x^{5} / 5\right]-\pi\left(\frac{x^{3}}{3}\right)$
$=\pi\left[\frac{4}{3}-1+\frac{1}{5}\right]-\pi\left[\frac{1}{3}\right]-0$
$=\frac{\pi}{5}$ unit 3.

3(a)

Area of Minar Segmat $=\frac{1}{2}\left(r^{2}(\theta-\sin \theta)\right)$

$$
=8(1.5-\sin 1.5)
$$

$$
\text { (Major Segment }=46.25)
$$

(b)

$$
\begin{aligned}
\frac{1}{\sec ^{2} x}+\frac{1}{\operatorname{cosec}^{2} x} & =\cos ^{2} x+\sin ^{2} x \\
& =1
\end{aligned}
$$

(c) $\quad y=3 \cos 2 x$. Las amplitule 3 and peried π.

(d) (i)
(ii)

$$
\begin{aligned}
& y=x^{3}+3 \text { cots } x \text {-axis at } x=-\sqrt[3]{3} \\
& y=5-x^{2} \text { unt } x \text {-axis at } x=\sqrt{5} \\
& \text { Area }=\int_{-\sqrt[4]{3}}^{1} x^{3}+3 \cdot d x+\int_{1}^{\sqrt{5}} 5-x^{2} 3 \\
& =\left[\frac{1}{4} x^{4}+3 x\right]_{-\sqrt[3]{3}}^{1}+\left[5 x-\frac{x^{3}}{3}\right]_{1}^{\sqrt{5}} \\
& =6.50+2.79=9.29
\end{aligned}
$$

(b)

4 (a)

$$
\begin{aligned}
\int_{0}^{1} \frac{b^{\prime}(x)}{b^{(x)}} \cdot d x & =[\ln b(x)]_{0}^{1} \\
& =\ln f(1)-\ln b(0) \\
& =\ln 12-\ln 4 \\
& =\ln 3
\end{aligned}
$$

$$
\begin{aligned}
& y=2+3 x-x^{3} \\
& \frac{d y}{d x}=3-3 x^{2} \\
& \frac{d x y}{d x^{2}}=-6 x
\end{aligned}
$$

Stat P5. $\frac{d_{n}}{d x}=0$

$$
\begin{aligned}
\therefore \quad 3-3 x^{2} & =0 \\
x & = \pm 1
\end{aligned}
$$

at $x=1 ; \quad \frac{d^{2}}{d x} x-v e \quad \therefore \quad(1,4)$ is max. Turn p at $x=-1, \quad \frac{d^{2} y}{d^{2} x^{2}}$ it $+v e \therefore(-1,0)$ is min. Tum $P t$ P.O.I at $\frac{d^{2} y}{d x^{2}}=0 \quad \therefore$ at $x=0$

Before $x=0 \quad \frac{d^{2} y}{d-x^{2}} ;+v e$ and aftr $x=0 \quad \frac{d^{2} y}{d x^{2}} \dot{x}-1$ Conemity chenge
$(0,2) \quad$ - P. O.I

(c)

$$
\begin{aligned}
& y=e^{-x} \\
& \frac{d y}{\alpha x}=-e^{-x}
\end{aligned}
$$

at $x=1, y=\frac{1}{e}$ and guadeint of nomed is $=-\frac{1}{-1}=e$
\therefore Equ i: $y=\frac{e}{1}=e_{2}(x-1)$

$$
-y-1=e^{2}(x-1)
$$

$$
e y-e^{2} x-1+e^{2}=0
$$

$4(d)$ Prove $\int_{0}^{a} f(x) \cdot d x=\int_{0}^{a} f(a-x) \cdot d x$

$$
\begin{array}{rl}
L H S & =F(a)-F(0) \\
R H S & =[-F(a-x)]_{0}^{a} \\
& =-F(0)+F(a) \\
& =F(a)-F(0) \\
& =L H S \\
Q & E D .
\end{array}
$$

Question 5

$$
\text { a) } \begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& \frac{d W}{d r}=4 \pi r^{2} \\
& A=4 \pi r^{2} \\
& \frac{d A}{d r}=8 \pi r \\
& \frac{d V}{d r}: \frac{d A}{d r} \\
&=4 \pi r^{2}: 8 \pi r \\
&=r: 2
\end{aligned}
$$

b) i)

$$
\text { i) } \begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
A B & =\sqrt{(2-(-3))^{2}+(4-0)^{2}} \\
& =\sqrt{41} \\
A C & =\sqrt{(6-(-3))^{2}+(-1-0)^{2}} \\
& =\sqrt{82} \\
B C & =\sqrt{(2-6)^{2}+(4-(-1))^{2}} \\
& =\sqrt{41}
\end{aligned}
$$

since $A B=B C$
$\therefore \triangle A B C$ is isosceles
ii) Since pythagoras' theorem holds ie $A B^{2}+B C^{2}=A C^{2}$
$\triangle A B C$ is right angled

$$
\begin{aligned}
\therefore A & =\frac{1}{2} \times \sqrt{41} \times \sqrt{41} \\
& =\frac{41}{2} \text { units }^{2}
\end{aligned}
$$

c) i)

ii) $\quad \frac{F G}{G C}=\frac{B D}{D C}$ (ratio of intercepts, $D G \| B F$)

$$
\begin{aligned}
& B D=D C \quad(D \text { is midpoint of } B C) \\
& \therefore \frac{F G}{G C}=1 \\
& F G=G C \\
& \frac{A F}{F G}\left.=\frac{A E}{E D} \quad \text { (ratio of intercepts, } D G \| B F\right) \\
& \therefore \frac{A F}{F G}=1 \\
& \therefore E D \quad(E \text { is midpoint of } A D) \\
& A F=F G
\end{aligned}
$$

And so $A F=F G=G C$
Question 6
a) $\ln \left(\ln \sqrt{e^{4}}\right)$

$$
\begin{aligned}
& =\ln \left(\ln \left(e^{4}\right)^{\frac{1}{2}}\right) \\
& =\ln \left(\ln e^{2}\right) \\
& =\ln 2
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& a=12 t \\
& v=6 t^{2}+c \\
& \text { when } t=0, v=-8 \\
& -8=C
\end{aligned}
$$

$$
\begin{aligned}
& v= 6 t^{2}-8 \\
& x=2 t^{3}-8 t+c \\
& \text { when } t=0, x=0 \\
& c=0 \\
& \therefore x=2 t^{3}-8 t \quad m .
\end{aligned}
$$

ii) when $x=0$

$$
\begin{aligned}
& 0=2 t^{3}-8 t \\
& 0=2 t\left(t^{2}-4\right) \\
& 0=2 t(t-2)(t+2) \\
& t=-2,0,2
\end{aligned}
$$

particle is next at the origin after 2 seconds.
c) i)

$$
\text { i) } \begin{aligned}
& \frac{d}{d x}\left(\frac{3}{x^{3}+1}\right) \\
&= \frac{d}{d x}\left(3\left(x^{3}+1\right)^{-1}\right) \\
&=-3\left(x^{3}+1\right)^{-2} \cdot 3 x^{2} \\
&=-9 x^{2} \\
&\left(x^{3}+1\right)^{2}
\end{aligned}
$$

ii)

$$
\text { i) } \begin{aligned}
& V=\pi \int_{a}^{b} y^{2} d x \\
& V=\pi \int_{0}^{1}\left(\frac{3 x}{3^{3}+1}\right)^{2} d x \\
&=\pi \int_{0}^{1} \frac{9 x^{2}}{\left(x^{3}+1\right)^{2}} d x \\
&=-\pi \int_{0}^{1} \frac{-9 x^{2}}{\left(x^{3}+1\right)^{2}} d x \\
&=-\pi\left[\frac{3}{x^{3}+1}\right]_{0}^{1} \\
&=-\pi\left[\frac{3}{(1)^{3}+1}-\frac{3}{(0)^{3}+1}\right] \\
&\left.=\frac{3 \pi}{2} \text { units }^{3}\right]
\end{aligned}
$$

ali)

$$
\text { i) } \begin{array}{r}
v=\pi r^{2} h \\
\pi r^{2} h=800 \\
h=\frac{800}{\pi r^{2}} \\
A=2 \pi r^{2}+2 \pi r h
\end{array}
$$

sub (1) into (2)

$$
\begin{aligned}
& A=2 \pi r^{2}+2 \pi r\left(\frac{800}{\pi r^{2}}\right) \\
& A=2 \pi r^{2}+\frac{1600}{r}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& A=2 \pi r^{2}+1600 r^{-1} \\
& \frac{d A}{d r}=4 \pi r \cdot-1600 r^{-2} \\
& \frac{d^{2} A}{d r^{2}}=4 \pi+3200 r^{-3}
\end{aligned}
$$

For stat. points let $\frac{d A}{d t}=0$

$$
\begin{gathered}
4 \pi r-\frac{1600}{r^{2}}=0 \\
4 \pi r^{3}-1600=0 \\
4 \pi r^{3}=1600 \\
r^{3}=\frac{400}{\pi} \\
r=\sqrt[3]{\frac{400}{\pi}} \\
\frac{d^{2} A}{d r^{2}}=4 \pi+\frac{3200}{r^{3}}
\end{gathered}
$$

clearly $\frac{d^{2} A}{d r^{2}}>0$ when $r>0$
\therefore Minimum A when $r=\sqrt[3]{\frac{400}{\bar{T}}}$

$$
\begin{aligned}
\text { Mhinum } A & =2 \pi\left(\sqrt[3]{\frac{400}{\pi}}\right)^{2}+\frac{1600}{\left(\sqrt[3]{\frac{400}{\pi}}\right)} \\
\text { minimum Cost } & =\left(2 \pi\left(\sqrt[3]{\frac{400}{\pi}}\right)^{2}+\frac{1600}{\left(\sqrt[3]{\frac{400}{\pi}}\right)}\right) \times 78 \\
& =\$ 37211 \text { (to nearest dollar) }
\end{aligned}
$$

