

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2013 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #3

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 2 hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each Section (A, B, and C) is to be returned in a separate bundle. Multiple choice questions are to be answered on the answer sheet provided.
- All necessary working should be shown in every question, except multiple choice.

Total Marks - 72

- Attempt questions 1 13.
- All questions are not of equal value.
- Unless otherwise directed give your answers in simplest exact form.

Examiner: A.M.Gainford

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_{e} x, x > 0$

Multiple Choice

ANSWER ON THE ANSWER SHEET PROVIDED

In Questions 1 to 7 indicate which of the answers A, B, C, or D is the correct answer. Write the letter corresponding to the answer on the answer sheet supplied.

Question 1 (1 mark)

The derivative of $\sin^2 x =$ A: $2 \sin x$ B: $2 \cos x$ C: $2 \sin x \cos x$ D: $2 \cos^2 x$

Question 2 (1 mark)

Which of the following best represents the graph of $f(x) = 2x^3 - 3x^2$?

A: B: a_{13} b_{13} a_{13} $a_$ Marks

1

Question 3 (1 mark)

For which values of x is the curve $y = x^3 + 2x^2$ concave up?

A:	$x < -\frac{2}{3}$
B:	$x < -\frac{3}{2}$
C:	$x > -\frac{2}{3}$
D:	$x > \frac{3}{2}$

Question 4 (1 mark)

In the diagram below, $\angle AED = \angle ABC$ and $\angle ADE = \angle ACB$. The value of x is:

Question 5 (1 mark)

What is the greatest value of the function $y = 6 - 3\cos 2x$?

1

A:	6
B:	3
C:	0
D:	9

1

Question 6 (1 mark)

The shaded region between the circle $x^2 + y^2 = 4$ and the line y = 1 is shown below. **1** The area of the region is given by:

Question 7 (1 mark)

The second derivative of
$$\frac{e^x + e^{-x}}{2}$$
 is:-
A: $\frac{e^x - e^{-x}}{2}$
B: $\frac{e^{2x} + e^{-2x}}{2}$
C: $\frac{e^x + e^{-x}}{2}$
D: $\frac{e^{2x} - e^{-2x}}{2}$

Section A (20 Marks) (Start a new booklet)

Question 8 (12 marks)

- (a) Differentiate the following:
 - (i) $y = 3\sin 2x$
 - (ii) $y = \frac{1}{e^{2x}}$
 - (iii) $y = x^2 \cos x$
 - (iv) $y = \frac{\ln x}{x}$

(v)
$$y = \tan^2 3x$$

(b) Find

(i) $\int \sin 2x \, dx$

(ii)
$$\int_0^{\frac{\pi}{4}} \sec^2 x dx$$

(iii)
$$\int \frac{2x}{x^2 - 7} dx$$

(c) Use Simpson's rule with five function values to find an approximation to

 $\int_{0}^{4} \frac{x^2}{x+1} dx$

(Answer in simplified improper fraction form.)

Marks 5

4

Question 9 (8 marks)

(a) The graph shows f'(x), the derivative of y = f(x).

- (i) Copy the graph to your answer booklet.
- (ii) Sketch on the graph a possible graph of y = f(x) given that the curve passes through the origin. On your graph of y = f(x) mark any points of inflexion.

The sketch shows the curves $y = x^2 - 4$ 4 and $y = 1 - (x - 1)^2$.

- (i) Find the points of intersection of the curves.
- (ii) Calculate the area of the region between the two curves.

Section B (23 Marks) START A NEW BOOKLET

Question 10 (11 Marks)

(a)	Sketch t	he graph of $y = e^x - 2$ showing the important features.	Marks 2
(b)	Find $\int_0^{\frac{\pi}{9}}$	$\sec^2 3x dx$	2
(c)	Sketch th	the curve $y = 1 + \cos 2x$ in the domain $0 \le x \le 2\pi$.	2
(e)	(i)	Sketch the graph of $y = 1 + \ln x$, and shade the area bounded by the curve, the <i>y</i> -axis, and the lines $y = 1$ and $y = 2$.	5
	(ii)	Make x the subject of the equation $y = 1 + \ln x$.	

(iii) Find the volume (in terms of *e*) generated by rotating the shaded region about the *y*-axis.

Question 11 (12 Marks)

- (a) Consider the function $y = x \log_e x$.
 - (i) Find the derivative.
 - (ii) Hence find the minimum value of $x \log_e x$ and justify your answer.

(b) Given the function
$$y = (3-x)(x-2)^2$$
:

- (i) Find the co-ordinates of the stationary points, and determine their nature.
- (ii) Find the co-ordinates of any points of inflexion.
- (iii) Sketch the curve in the domain $0 \le x \le 4$.
- (c) Find $\frac{d}{dx}(\ln(\cos x))$. Give your answer in simplified form.

2

Section C (22 Marks)

START A NEW BOOKLET

5

5

Question 12 (10 Marks)

(a) For the triangle with vertices $P(-1,\frac{1}{2})$, Q(1,4), and R(3,1):

- (i) Sketch the triangle on a number plane in your answer booklet.
- (ii) Find the midpoint, M, of the interval joining QR.
- (iii) Find the gradient of *PM*.
- (iv) Show that *PM* is the perpendicular bisector of *QR*.

The figure ABCD is a parallelogram. AP bisects $\angle DAB$, and CQ bisects $\angle BCD$.

- (i) Prove that $\Delta DAP \equiv \Delta BCQ$.
- (ii) Prove that AQ = CP.

Question 13 (12 Marks)

(a) Find the equation of the normal to the curve $y = 2 \ln x$ at the point (e, 2).

(b) (i) On the same diagram, sketch the curves $y = \sqrt{x}$ and $y = \frac{1}{\sqrt{x}}$ in the first **5** quadrant. Shade the area bounded by the two curves and the ordinate x = 2.

2

5

(ii) Find the volume generated when this area is rotated about the *x*-axis.

In the diagram, the point *B* whose *y*-coordinate is 1, lies on the curve $y = \ln(x+1)$. The tangent to the curve at *B* cuts the *y*-axis at *C*. A straight line through *B* perpendicular to the *y*-axis meets the *y*-axis at *A*.

- (i) Show that the *x*-coordinate of *B* is (e 1).
- (ii) Show that the equation of the tangent *BC* is x ey + 1 = 0.
- (iii) Find the length of AC in terms of e.

This is the end of the paper.

Maths Zunit Task 3

Multiple Choice

 C D C D DC

Q9

2 st pts 1 pt of influen-1 ships + origin 2013 Maths 2 unit Task 3

Section B

Question 10

(a)

(e)

(i)

$$y = 1 + \ln x$$
$$y - 1 = \ln x$$
$$e^{y - 1} = x$$

(iii)

$$\pi \int_{1}^{2} (e^{y-1})^{2} dy = \pi \int_{1}^{2} e^{2y-2} dy$$
$$= \frac{\pi}{2} [e^{2y-2}]_{1}^{2}$$
$$= \frac{\pi}{2} (e^{2} - 1) units^{2}$$

Q11 (a) (i) y= x loye x $y' = \log (2 + 1)$ (ii) $y' = \frac{1}{x}$ Stat Pds (1'=0) y loge 7 +1 =0 104072-1-1 z= è. y''=e at $a=\frac{1}{e}$ y" 70 Hac so mining minimum occurs at z=te y= ~ logete =-e $y = (3-x)(x-2)^2$ (b) (i) $y' = -(x-2)^2 + 2(3-x)(x-2)$ $= -x^{2} + 4x - 4 + 2(3x - 6 - x^{2} + 2x)$ $= -3x^{2} + 14x - 16$

Sdat Pts (y'=0) (3x-6)(3x-8) = 0(1-2)(3-2-8)=0 2=2, 3 $y^{11} = -6 \alpha + 14$ Nature at 2=2 y"=-12+14=270 minimen. Nature at 2=3 y"=-16t14 =-2<0 maximum At x=2, y=0 At x= 3, y= = (3, 2) maximum. (2,0)minimum (ii) y'' = -6x + 14-6x+14=0アレニュ み スニラ, リニシテ Inflexion (3, 27)

(c)

$$\frac{d}{dx}\ln(\cos x) = -\frac{\sin x}{\cos x} = -\tan x$$

•

2013 20 TASK 30 Q12+13.

$$MP_{QR} = \left(\frac{1+3}{2}, \frac{4+1}{2}\right) = \left(2, \frac{5}{2}\right) \qquad (1)$$

$$\binom{(m)}{M_{PM}} = \underbrace{Y = Y_1}_{X_2 - X_1} = \frac{5}{2} - \frac{1}{2} = \frac{2}{3} \qquad (1)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

$$\binom{(N)}{M(2, \frac{5}{2})} \quad \text{bisects QR} \qquad (\Delta) \qquad (2)$$

b) In
$$\triangle$$
 DAP & BCQ
As \angle DAP = \angle BCQ (opp \angle 's of *llgram* are equal
So $AD = BC$ (opp sides of *llgram* are equal).
A. \angle APD = \angle QBC (opp \angle s of *llgram* are equal).
 \triangle DAP = \triangle BCQ.
 \triangle DAP = \triangle BCQ.
 \triangle BS
 By corresp. sides of congruent \triangle 's.
 $QB = DP$.
 $\triangle B = DC$ (opp sides of plgram equal).
 $\circ \circ$ \triangle AB-QB = $DC - DP$.
 $\triangle C = CP$ QED.

(a)
$$y = 2 \ln x$$

 $y = 2 \ln x$
 $y = 2 \ln x$