SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2013
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#3

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 2 hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each Section (A, B, and C) is to be returned in a separate bundle. Multiple choice questions are to be answered on the answer sheet provided.
- All necessary working should be shown in every question, except multiple choice.

Total Marks - 72

- Attempt questions 1 - 13 .
- All questions are not of equal value.
- Unless otherwise directed give your answers in simplest exact form.

Examiner: A.M.Gainford

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec ^{a x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { NOTE }: \ln x=\log _{e} x, x>0
$$

Multiple Choice

ANSWER ON THE ANSWER SHEET PROVIDED

In Questions 1 to 7 indicate which of the answers $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D is the correct answer. Write the letter corresponding to the answer on the answer sheet supplied.

Question 1 (1 mark)

The derivative of $\sin ^{2} x=$ A: $\quad 2 \sin x$
B: $\quad 2 \cos x$
C: $\quad 2 \sin x \cos x$
D: $\quad 2 \cos ^{2} x$

Question 2 (1 mark)
Which of the following best represents the graph of $f(x)=2 x^{3}-3 x^{2}$?
A:

B:

C:

D:

Question 3 (1 mark)
For which values of x is the curve $y=x^{3}+2 x^{2}$ concave up?
A: $\quad x<-\frac{2}{3}$
B: $\quad x<-\frac{3}{2}$
C: $\quad x>-\frac{2}{3}$
D: $\quad x>\frac{3}{2}$
Question 4 (1 mark)
In the diagram below, $\angle A E D=\angle A B C$ and $\angle A D E=\angle A C B$. The value of x is:

A: $\frac{5}{7}$
B: $\quad 3 \frac{1}{2}$
C: 5
D: $\quad 10$

Question 5 (1 mark)
What is the greatest value of the function $y=6-3 \cos 2 x$?
A: 6
B: 3
C: 0
D: $\quad 9$

Question 6 (1 mark)
The shaded region between the circle $x^{2}+y^{2}=4$ and the line $y=1$ is shown below. The area of the region is given by:

A: $\quad \int_{-1}^{1}\left(\sqrt{4-x^{2}}-1\right) d x$
B: $\quad \int_{-1}^{1}\left(\sqrt{4-x^{2}}\right) d x$
C: $\quad \int_{-\sqrt{3}}^{\sqrt{3}}\left(\sqrt{4-x^{2}}\right) d x$
D: $\quad \int_{-\sqrt{3}}^{\sqrt{3}}\left(\sqrt{4-x^{2}}-1\right) d x$

Question 7 (1 mark)

The second derivative of $\frac{e^{x}+e^{-x}}{2}$ is:-
A: $\quad \frac{e^{x}-e^{-x}}{2}$
B: $\quad \frac{e^{2 x}+e^{-2 x}}{2}$
C: $\frac{e^{x}+e^{-x}}{2}$
D: $\frac{e^{2 x}-e^{-2 x}}{2}$

Section A (20 Marks)

(Start a new booklet)
Question 8 (12 marks)
(a) Differentiate the following:
(i) $y=3 \sin 2 x$
(ii) $y=\frac{1}{e^{2 x}}$
(iii) $y=x^{2} \cos x$
(iv) $y=\frac{\ln x}{x}$
(v) $y=\tan ^{2} 3 x$
(b) Find
(i) $\int \sin 2 x d x$
(ii) $\int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x$
(iii) $\int \frac{2 x}{x^{2}-7} d x$
(c) Use Simpson's rule with five function values to find an approximation to

$$
\int_{0}^{4} \frac{x^{2}}{x+1} d x
$$

(Answer in simplified improper fraction form.)

Question 9 (8 marks)
(a) The graph shows $f^{\prime}(x)$, the derivative of $y=f(x)$.

(i) Copy the graph to your answer booklet.
(ii) Sketch on the graph a possible graph of $y=f(x)$ given that the curve passes through the origin. On your graph of $y=f(x)$ mark any points of inflexion.
(b)
 The sketch shows the curves $y=x^{2}-4$ 4 and $y=1-(x-1)^{2}$.
(i) Find the points of intersection of the curves.
(ii) Calculate the area of the region between the two curves.

Section B (23 Marks)

START A NEW BOOKLET
Question 10 (11 Marks)

Marks

(a) Sketch the graph of $y=e^{x}-2$ showing the important features.
(b) Find $\int_{0}^{\frac{\pi}{9}} \sec ^{2} 3 x d x$
(c) Sketch the curve $y=1+\cos 2 x$ in the domain $0 \leq x \leq 2 \pi$.
(e) (i) Sketch the graph of $y=1+\ln x$, and shade the area bounded by the curve, the y-axis, and the lines $y=1$ and $y=2$.
(ii) Make x the subject of the equation $y=1+\ln x$.
(iii) Find the volume (in terms of e) generated by rotating the shaded region about the y-axis.

Question 11 (12 Marks)
(a) Consider the function $y=x \log _{e} x$.
(i) Find the derivative.
(ii) Hence find the minimum value of $x \log _{e} x$ and justify your answer.
(b) Given the function $y=(3-x)(x-2)^{2}$:
(i) Find the co-ordinates of the stationary points, and determine their nature.
(ii) Find the co-ordinates of any points of inflexion.
(iii) Sketch the curve in the domain $0 \leq x \leq 4$.
(c) Find $\frac{d}{d x}(\ln (\cos x))$. Give your answer in simplified form.

Section C (22 Marks)

START A NEW BOOKLET

Question 12 (10 Marks)
(a) For the triangle with vertices $P\left(-1, \frac{1}{2}\right), Q(1,4)$, and $R(3,1)$:
(i) Sketch the triangle on a number plane in your answer booklet.
(ii) Find the midpoint, M, of the interval joining $Q R$.
(iii) Find the gradient of $P M$.
(iv) Show that $P M$ is the perpendicular bisector of $Q R$.
(b)

The figure $A B C D$ is a parallelogram. $A P$ bisects $\angle D A B$, and $C Q$ bisects $\angle B C D$.
(i) Prove that $\triangle D A P \equiv \triangle B C Q$.
(ii) Prove that $A Q=C P$.

Question 13 (12 Marks)
(a) Find the equation of the normal to the curve $y=2 \ln x$ at the point $(e, 2)$.
(b) (i) On the same diagram, sketch the curves $y=\sqrt{x}$ and $y=\frac{1}{\sqrt{x}}$ in the first quadrant. Shade the area bounded by the two curves and the ordinate $x=2$.
(ii) Find the volume generated when this area is rotated about the x-axis.
(c)

In the diagram, the point B whose y-coordinate is 1 , lies on the curve $y=\ln (x+1)$. The tangent to the curve at B cuts the y-axis at C. A straight line through B perpendicular to the y-axis meets the y-axis at A.
(i) Show that the x-coordinate of B is $(e-1)$.
(ii) Show that the equation of the tangent $B C$ is $x-e y+1=0$.
(iii) Find the length of $A C$ in terms of e.

This is the end of the paper.

Maths 2 unit Task 3 Multide Choice

1	C
2	D
3	C
4	A
S	D
6	D
7	C

Q8 (a) (i) $y_{1}=3 \sin 2 x$

$$
\begin{aligned}
y^{\prime} & =3 \cdot \cos 2 x \cdot 2 \\
& =6 \cos 2 x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\frac{1}{e^{2 x}}=e^{-2 x} \\
y & =e^{-2 x}-2 \\
& =-2 e^{-2 x} \quad\left(=\frac{-2}{e^{2 x}}\right)
\end{aligned}
$$

(iii),$y=x^{2} \cos x$

$$
y^{\prime}=\cos x \cdot 2 x+x^{2}(-\sin x)
$$

$$
=2 x \cos x-x^{2} \sin x
$$

(iv)

$$
\begin{aligned}
y^{\prime} & =\frac{\frac{\ln x}{x}}{y^{\prime}}=\frac{x \cdot \frac{1}{x}-\ln x \cdot 1}{x^{2}} \\
& =\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

(v)

$$
\begin{aligned}
y & =\tan ^{2} 3 x \\
y & =2 \tan 3 x \cdot \sec ^{2} 3 x \cdot 3 \\
& =6 \tan 3 x \cdot \sec ^{2} 3 x
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \int \sin 2 x d x \\
& =-\frac{1}{2} \cos 2 x+c
\end{aligned}
$$

(ii) $\int_{0}^{\pi / 4} \sec ^{2} 3 x d x$

Problem: $y=\sec ^{2} 3 x$ had a discontinuity at $x=\frac{\pi}{6}$.
Hence it is not porsible to 2 collalate $\int_{a}^{\pi / 4} \sec ^{2} 3 x d x$

If thi i mot moticed: $0 R$

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \sec ^{2} 3 x d x \\
= & \frac{1}{3}[\tan 3 x]_{0}^{\pi / 4} \\
= & \frac{1}{3}\left\{\left[\tan \frac{3 \pi}{4}\right]-\{\tan 0]\right\} \\
= & \frac{1}{3}\left[-\frac{1}{2}-0\right\} \\
= & \operatorname{H}^{2} \sqrt{3} \sqrt{\sqrt{2 x}}-\frac{1}{3}
\end{aligned}
$$

(iii) $\int \frac{2 x}{x^{2}-7} d x$

$$
=\ln \left(x^{2}-7\right)+c
$$

(c) $\int_{0}^{4} \frac{x^{2}}{x+1} d x$
$d x$

x	0	1	2	3	4
y	0	$\frac{1}{2}$	$\frac{4}{3}$	$\frac{9}{4}$	$\frac{16}{5}$
$\left.\frac{1}{2}+2 \times \frac{4}{3}+4 \times \frac{9}{4}+\frac{16}{5}\right)$					

$$
\approx \frac{1}{3}\left(0+4 \times \frac{1}{2}+2 \times \frac{4}{3}+4 \times \frac{9}{4}+\frac{16}{5}\right)
$$

$$
\begin{aligned}
& =\frac{1}{3} C= \\
& =\frac{253}{45}
\end{aligned}
$$

$=\frac{1}{3}\left(2+\frac{8}{3}+9+\frac{16}{5}\right)$

Qa

2 st pts
1 pt of influx.
1 shop + origin
(b) (i) $y=x^{2}-4 \quad y=1-(x-1)^{2}$

For $p t$ of $7: x^{2}-4=1-(x-1)^{2}$

$$
\begin{aligned}
x^{2}-4 & =1-x^{2}+2 x-1 \\
x^{2}-4 & =-x^{2}+2 x \\
2 x^{2}-2 x-4 & =0 \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
\therefore x=2 \text { or } x & =-1
\end{aligned}
$$

\therefore Pts of n are $(-1,-3)$ ad $(2,0)$
(ii)

$$
\begin{aligned}
& \text { Area }=\int_{-1}^{2}\left(1-(x-1)^{2}-\right. \\
& \left.\left(x^{2}-4\right)\right) d x \\
& =\int_{-1}^{2}\left(1-x^{2}+2 x-1-x^{2}+4\right) d x \\
& =\int_{-1}^{2}\left(4+2 x-2 x^{2}\right) d x \\
& =\left[4 x+x^{2}-\frac{2}{3} x^{3}\right]_{-1}^{2} 2 \\
& =\left[8+4-\frac{16}{3}\right]-\left[-4+1+\frac{2}{3}\right] \\
& =15-6 \\
& =9 \text { units }
\end{aligned}
$$

2013 Maths 2 unit Task 3

Section B

Question 10
(a)

(b)
$\int_{0}^{\frac{\pi}{9}} \sec ^{2} 3 x d x=\frac{1}{3}[\tan 3 x]_{0}^{\frac{\pi}{9}}$
$=\frac{1}{3}\left(\tan \left(\frac{\pi}{3}\right)-\tan 0\right)$
$=\frac{\sqrt{3}}{3}$
(c)

(e)
(i)

(ii)

$$
\begin{gathered}
y=1+\ln x \\
y-1=\ln x \\
e^{y-1}=x
\end{gathered}
$$

(iii)

$$
\begin{aligned}
\pi \int_{1}^{2}\left(e^{y-1}\right)^{2} d y & =\pi \int_{1}^{2} e^{2 y-2} d y \\
& =\frac{\pi}{2}\left[e^{2 y-2}\right]_{1}^{2} \\
& =\frac{\pi}{2}\left(e^{2}-1\right) \text { units }^{2}
\end{aligned}
$$

Q 11
(a) (i)

$$
\begin{aligned}
& y=x \log _{e} x \\
& y^{\prime}=\log _{e} x+1
\end{aligned}
$$

(ii) $y^{\prime \prime}=\frac{1}{x}$
stat pos ($y^{\prime}=0$)

$$
\begin{gathered}
\text { y } \log _{e} x+1=0 \\
\log _{e} x=-1 \\
x=\frac{1}{e} . \\
y^{\prime \prime}=e \quad \text { at } x=\frac{1}{e}
\end{gathered}
$$

$y^{\prime \prime}>0 \quad \forall x \quad \therefore$ minima
minimum occurs at $x=\frac{1}{e}$

$$
\begin{aligned}
y & =\frac{1}{e} \log e \frac{1}{e} \\
& =-\frac{b}{e}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
y & =(3-x)(x-2)^{2} \\
y^{\prime} & =-(x-2)^{2}+2(3-x)(x-2) \\
& =-x^{2}+4 x-4+2\left(3 x-6-x^{2}+2 x\right) \\
& =-3 x^{2}+14 x-16
\end{aligned}
$$

Stat Pts $\left(y^{\prime}-0\right)$

$$
\begin{gathered}
\frac{(3 x-6)(3 x-8)}{3}=0 \\
(x-2)(3 x-8)=0 \\
x=2, \frac{8}{3} \\
y^{\prime \prime}=-6 x+14
\end{gathered}
$$

Nature at $x=2$

$$
y^{\prime \prime}=-12+14=2>0 \text { minimum. }
$$

Nate at $x=\frac{2}{3}$

$$
y^{\prime \prime}=-16+14^{3}=-2<0 \quad \text { maximum }
$$

At $x=2, y=0$
Af $x=\frac{8}{3}, y=\frac{4}{27}$
$(2,0)$ minimum $\left(\frac{8}{3}, \frac{4}{27}\right)$ maximum.
(ii)

$$
\begin{array}{r}
y^{\prime \prime}=-6 x+14 \\
-6 x+14=0 \\
x=\frac{7}{3}
\end{array}
$$

At $x=\frac{7}{3}, y=\frac{2}{27}$
inflexion $\left(\frac{7}{3}, \frac{2}{27}\right)$
(iii)

At $x=0, y=12$
At $x=4, x=-4$

(c)

$$
\frac{d}{d x} \ln (\cos x)=-\frac{\sin x}{\cos x}=-\tan x
$$

$20132 \cup$ TASK 30 Q12+13.
(12)
a)
(i)

(ii)

$$
\begin{equation*}
M P_{Q R}=\left(\frac{1+3}{2}, \frac{4+1}{2}\right)=\left(2, \frac{5}{2}\right) \tag{1}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
m_{\text {PM }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\frac{5}{2}-\frac{1}{2}}{2+1}=\frac{2}{3} \tag{1}
\end{equation*}
$$

(iv)
$M\left(2, \frac{5}{2}\right)$ bisects $Q R$. (2)
Gradient $=m_{O R}=\frac{4-1}{i+3}=\frac{-3}{2}$.
$M_{P M}=-\frac{1}{m_{Q R}} \quad \therefore \quad$ perpendicular bisector.
b) in $\triangle D A P$ \& $B C Q$
$A: \angle D A P=\angle B C Q$ (app \angle then of bisected). are equal
S\% $A D=B C$ (opp sides of II gram are equal).
A. $\angle A P D=\angle Q B C$ (OPP \angle 's of II gram are equal).

$$
\begin{gather*}
\triangle D A P \equiv \triangle B C Q . \tag{3}\\
A A S .
\end{gather*}
$$

By corresp. Sides of congruent A^{\prime}.

$$
Q B=D P
$$

$A B=D C$ (OpP sides of \#gram equal)

$$
\begin{align*}
\therefore \quad A B-Q B & =D C-D P . \tag{2}\\
A C & =C P \quad Q E D .
\end{align*}
$$

(13) a) $y=2 \ln x . \quad \frac{d y}{d x}=\frac{2}{x}$. at $(e, 2)$.

$$
\text { Perpendicular }=-\frac{d x}{d y}=\frac{-x}{2}
$$

$$
\begin{gather*}
y-y_{1}=m\left(x-x_{1}\right) . \\
y-2=-\frac{e}{2}(x-e) . \\
y=\frac{e^{2}}{2}-\frac{e x}{2}+2 . \tag{2}
\end{gather*}
$$

b)

$$
\begin{aligned}
V & =\pi \int_{1}^{2} g(x)^{2}-f(x)^{2} \cdot d x \\
& =\pi \int_{1}^{2} x-\frac{1}{x} \cdot d x \\
& =\pi\left[\frac{x^{2}}{2}-\ln x\right]_{1}^{2} \\
& =\pi\left[\left(\frac{4}{2}-\ln 2\right)-\left(\frac{1}{2}-\ln 1\right)\right] \\
& =\pi\left[\left\lvert\, \frac{1}{2}-\ln 2+\ln 1\right.\right]=\pi\left[\frac{3}{2}-\ln 2\right] \ln ^{2}+5^{3}
\end{aligned}
$$

13 (c)

$$
\begin{aligned}
& y=\ln (x+1) . \\
& 1=\ln (x+1) \\
& e^{\prime}=e^{\ln (x+1)} \\
& e=x+1 \\
& x=e-1
\end{aligned}
$$

$$
\frac{e x+2 y-e^{2}-4=0}{d x}=\frac{1}{x+1}=\frac{1}{e}=m
$$

$$
(e-1,7)
$$

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) . \\
& y-1=\frac{1}{e}(x-(e-1)) . \\
& e y-\notin=x+1-\notin . \tag{2}\\
& B C \text { is } x+1-e y=0
\end{align*}
$$

euts axis when $x=0$.

$$
\begin{align*}
& e y=1 \\
& y=\frac{1}{e} \tag{1}
\end{align*}
$$

Coords $A(0,1) \quad C\left(0, \frac{1}{e}\right)$
Distance $A C=1-\frac{1}{e}$. units

