\begin{tabular}{|c|c|c|}
\hline Question No \& Question \& Mark \\
\hline 1 \& \begin{tabular}{l}
a) Differentiate \(\left(x^{2}+2 x+2\right) e^{-x}\) \\
b) Hence evaluate \(\int_{1}^{2} x^{2} e^{-x} d x\)
\end{tabular} \& \[
3
\]
\[
2
\] \\
\hline 2 \& Find \(\int \frac{\cos x}{1+\sin ^{2} x} d x\) by using the substitution \(u=\sin x\) \& 3 \\
\hline 3 \& \begin{tabular}{l}
a) Let \(P(\theta)=2 \sin \theta-\theta\). Show that \(P(\theta)\) has a root between 1 and 2 . \\
b) Taking \(\theta=1.8\) as an initial approximation for the solution to the equation \(2 \sin \theta=\theta\) between \(\frac{\pi}{2}\) and \(\pi\), use one application of Newton's Method to find a closer approximation.
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 2
\end{aligned}
\] \\
\hline 4 \& \begin{tabular}{l}
A spherical balloon is being inflated so that its surface area is increasing at a steady rate of \(12 \mathrm{~cm}^{2} / \mathrm{s}\). \\
a) Show that \(\frac{d r}{d t}=\frac{3}{2 \pi r}\) where \(r\) is the radius of the balloon. \\
b) Find the rate of increase of the volume at the instant that the surface area is \(1600 \pi \mathrm{~cm}^{2}\).
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 3
\end{aligned}
\] \\
\hline 5 \& \begin{tabular}{l}
(i) Prove that \(\frac{d^{2} x}{d t^{2}}=\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}\) where \(v\) and \(x\) are the velocity and displacement of a particle respectively. \\
(ii) A particle moves in a straight line with an acceleration given by \(\ddot{x}=-\frac{1}{2} e^{-x}\). If \(v=1\) and \(x=0\) when \(t=0\), find the \\
a) velocity in terms of \(x\) \\
b) displacement in terms of \(t\)
\end{tabular} \& 2

2
3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 6 \& \begin{tabular}{l}
The speed \(v \mathrm{~m} / \mathrm{s}\) of a particle moving along the \(x\) axis is given by \(v^{2}=18+32 x-8 x^{2}\), where \(x\) is the distance from the origin. \\
a) Prove that the particle is in Simple Harmonic Motion. \\
b) Find its centre of motion and its period. \\
c) What is the amplitude?
\end{tabular} \& 2
2 \\
\hline 7 \& \begin{tabular}{l}
When the trigger of an aerosol can is depressed, the rate of decrease of the gas pressure in the can is given by \(\frac{d p}{d t}=k \sqrt{p-1}\) where \(p\) is the pressure (in atmospheres) in the can after \(t\) seconds. Initially the pressure is 10 atmospheres and after 10 seconds the pressure is 5 atmospheres. \\
a) Calculate the value of \(k\). \\
b) Find the pressure in the can after using it for 20 seconds.
\end{tabular} \& 3
2 \\
\hline 8 \& \begin{tabular}{l}
A ball is projected at an angle of elevation \(\alpha\) with speed \(V\) from a point on the ground. \\
i) The equations of motion are given as:
\[
\begin{aligned}
\& x=V t \cos \alpha \\
\& y=V t \sin \alpha-\frac{1}{2} g t^{2}
\end{aligned}
\] \\
Prove that the maximum height reached is \(\frac{V^{2} \sin ^{2} \alpha}{2 g}\) \\
ii) The ball just clears a wall of height \(h \mathrm{~m}\) at a distance of \(d \mathrm{~m}\) from the initial point of projection. \\
Prove that the maximum height reached by the ball is:
\[
\frac{1}{4}\left(\frac{d^{2} \tan ^{2} \alpha}{d \tan \alpha-h}\right)
\]
\end{tabular} \& 2

3 \\
\hline \& End of Task \& \\
\hline
\end{tabular}

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

BAULKHAM HILLS HIGH SCHOOL

2013

HSC Assessment Task 3

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 60 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks - 40

This paper consists of EIGHT questions on pages 3-4.

Attempt all questions

Answer each question on the appropriate page in the answer booklet

A page of standard integrals is on page 2.

Student's Number:

 Teacher:...TEACHER.

Year 12
HSC Assessment Task - 3
June 2013
MATHEMATICS EXTENSION 1
Marking Cover Sheet

Basic Skills		Problem Solving	
Question	Mark	Question	Mark
1a)	13	1b)	12
		2	13
3b)	12	3a)	12
4a)	12	4b)	13
5i)	12	5ii) a , b	/5
6a)	12	6b), c)	14
7b)	12	7a)	13
8i)	12	8ii)	13
SUB TOTAL	$1 / 15$	SUB TOTAL:	125
		140	

You may ask for extra writing paper if you need more space to answer question I
\sim Q2 - page I ~
Question 2
BUS\#: \qquad

You may ask for extra writing paper if you need more space to answer question 2
~Q3 - page 1 ~
Question 3
BUS\#: \qquad
a) $P(\theta)=2 \sin \theta-\theta$

$$
\begin{aligned}
& P(1)=2 \sin (1)-1=0.6829 \\
& P(2)=2 \sin (2)-2=-0.1814
\end{aligned}
$$

$P(1)$ and $P(2)$ have opposite signs and $P(0)$ is Continuages in $1 \leqslant \theta \leqslant 2$, 7 a root between 1 and 2 .
b)

$$
\begin{aligned}
\theta_{0} & =1.8 \\
\theta_{1} & =\theta_{0}-\frac{P(\theta)}{P^{\prime}(\theta)} \\
& =1.8-\frac{[2 \sin (1.8)-1.8]}{[2 \cos (1.8)-1]} \\
& =1.8-\frac{0.1477}{-1.4544} \\
& =1.9
\end{aligned}
$$

BUS\#: \qquad
a)

$$
\begin{aligned}
& A=4 \pi r^{2} \quad V=\frac{4 \pi r^{3}}{3} \\
& \frac{d A}{d t}=12 \mathrm{~cm}^{2} / \mathrm{s} \\
& \frac{d A}{d t}=4 \pi 2 r \cdot \frac{d r}{d t} \Rightarrow V^{3}=4 \pi \cdot 2 r \cdot d r V \\
& \frac{d r}{d t}=\frac{3}{2 \pi r}
\end{aligned}
$$

b)

You may ask for extra writing paper if you need more space to answer question 4

Question 5
(i) $\frac{d^{2} x}{d t^{2}}=\frac{d\left(1 / v^{2}\right)}{d x}$.

$$
\text { LBS }=\frac{d v}{d t}
$$

$$
=\frac{d v}{d x} \cdot \frac{d x}{d t} .
$$

$$
\equiv v \cdot \frac{d u}{d x} \sqrt{ } \quad \text { where } \frac{d x}{d t t}=v
$$

$$
=\frac{d\left(1 i^{2}\right)}{d x}
$$

(iii)

$$
\begin{gather*}
\quad \ddot{x}=\frac{d}{d x}\left(1 / 2^{2}\right)=-\frac{1}{2} e^{-x} \cdot \\
\frac{1}{2} v^{2}=-\frac{1}{2} \int e^{-x} d x \Rightarrow \frac{1}{2} v^{2}=+\frac{1}{2} e^{-x}+k . \tag{1}\\
\text { when } x=0, v=1 \Rightarrow k=0 . \\
\therefore v^{2}=e^{-x} \Rightarrow \text { (1). } \tag{1}\\
\therefore v=e^{-1 / 2 x}
\end{gather*}
$$

b) from (1) $\frac{d x}{d t}=e^{-1 / 2 x} / \Rightarrow t=\int \frac{e^{1 / 2 x} d x}{e^{1 / 2 x}}$

$$
\begin{array}{rl}
d t & t=2 e^{1 / 2 x}+c \\
t=0, x=0 & \Rightarrow c=-2 \\
\therefore 2 e^{1 / 2^{x}} & =t+2 \Rightarrow e^{1 / 2 x}=t / 2+1 \\
\frac{1}{2} x & =\ln \left(\frac{t}{2}+1\right) \\
x & =2 \ln (t / 2+1) /
\end{array}
$$

You may ask for extra writing paper if you need more space to answer question 5

Question 6
BON\#: \qquad
a)

$$
\begin{aligned}
& v^{2}=18+32 x-8 x^{2} \\
& -\frac{1}{2} v^{2}=-4 x^{2}+16 x+9
\end{aligned}
$$

differentiate wisr.t x

$$
\begin{aligned}
& \frac{d\left(1 / v^{2}\right)}{d x}=-8 x+16 \\
& \left.x=-8(x-2) \sqrt{\infty} \quad \because \quad \frac{d^{2} x}{d t^{2}}=\frac{d\left(1 / v^{2}\right)}{d x}\right) \text {. } \\
& \stackrel{\infty}{\times}=-n^{2} \times \quad \text { when } x=x-2 \text {, and } \\
& n=2 \sqrt{2} \text {. }
\end{aligned}
$$

\therefore The particle is in SHM.
b) Centre of motion is $x=0, \dot{\mu} \cdot x=2 \sqrt{ }$ period $=\frac{2 \pi}{n}=\frac{2 \pi}{2 \sqrt{2}}=\frac{\pi}{\sqrt{2}} s$
c) Amplitude is the max displacement from the centre of motion. At the point $V=0$.

$$
\begin{aligned}
& 4 x^{2}-16 x-9=0 \\
& 4 x^{2}-18 x+2 x-9=0 \\
& 2 x(2 x-9)+1(2 x-9)=0 \Rightarrow x=4 \frac{1}{2} ;-1 / 2 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { amplitude }=4 \frac{1}{2}-2 \\
& =2 V_{2} \mathrm{~cm}
\end{aligned}
$$

You may ask for extra writing paper if you need more space to answer question 6

Question 7
BON\#:
a) $\begin{aligned} \frac{d p}{d t}=k \sqrt{p-1} \quad \text { when } t & =0 \quad P=10 \\ t & =10 \quad P=5\end{aligned}$

$$
\int \frac{d p}{\sqrt{p-1}}=k \int d t
$$

$$
k t=\int(p-1)^{1 / 2} d p \sqrt{ }
$$

$$
K t=2(P-1)^{1 / 2}+C
$$

$$
0=2 \times 3+c \Rightarrow c=-6
$$

$$
k t=2(p-1)^{1 / 2}-6
$$

when $t=10 \quad p=5 \quad 10 K=2 \times 2-6$

$$
K=-1 / 5 \checkmark
$$

b) $\quad-\frac{1}{5} t=2 \sqrt{p-1}-6$.
when $t=20$

$$
\begin{aligned}
-\frac{1}{5} \times 24 & =2 \sqrt{P-1}-6 \\
2 L & =\not 2 \sqrt{P-1} \\
P-1 & =1 \\
P & =2 .
\end{aligned}
$$

\therefore after 20 S pressure in the can 's' 2 Atmospheres.
(—)

P

You may ask for extra writing paper if you need more space to answer question 7
i)

$$
\begin{array}{ll}
x=v t \cos \alpha \\
\dot{x}=v \cos \alpha & y=v t \sin \alpha-1 / 2 g t^{2} \\
& \dot{y}=v \sin \alpha-g t .
\end{array}
$$

at the highest point $\dot{y}=0$. is

$$
\begin{aligned}
\therefore \quad V \sin \alpha-g t & =0 . \\
t_{\text {max }} & =\frac{V \sin \alpha}{g} .
\end{aligned}
$$

In this time height reached is y.

$$
\begin{align*}
\therefore y_{\max } & =v \cdot \sin \alpha\left(\frac{v \sin \alpha}{9}\right)-\frac{1}{2} g\left(\frac{v^{2} \sin ^{2} \alpha}{g^{2}}\right) v \\
& =\frac{v^{2} \sin ^{2} \alpha}{g}-\frac{v^{2}}{2} \frac{\sin ^{2} \alpha}{9} \\
& =\frac{v^{2} \sin ^{2} \alpha}{2 g} \tag{A}
\end{align*}
$$

(ii) from (1) $t=\frac{x}{\sqrt{\cos \alpha}}$; sub this in (2)

$$
\begin{align*}
& y=v \sin \alpha \cdot \frac{x}{v \cos \alpha}-\frac{1}{2} \frac{x^{2}}{v^{2} \cos ^{2} \alpha} \\
& y=x \tan \alpha-\frac{1}{2} g \frac{x^{2}}{v^{2} \cos ^{2} \alpha} \tag{3}
\end{align*}
$$

When the ball clears the wall $x=d, y=h$ sub in (3)

$$
\begin{gathered}
h=d \tan \alpha-\frac{1}{2} \frac{d^{2}}{v^{2} \cos ^{2} \alpha} \\
\left.\Rightarrow \frac{v^{2}}{g}=\frac{d^{2}}{(d \tan p-h)^{2} \cos ^{2} \alpha}\right)
\end{gathered}
$$

V
You may ask for extra writing paper if you need more space to answer question 8

