Question No	Question	Mark
1	a) Differentiate $(x^2 + 2x + 2)e^{-x}$	3
	b) Hence evaluate $\int_{1}^{2} x^{2} e^{-x} dx$	2
2	Find $\int \frac{\cos x}{1 + \sin^2 x} dx$ by using the substitution $u = \sin x$	3
3	a) Let $P(\theta) = 2 \sin \theta - \theta$. Show that $P(\theta)$ has a root between 1 and 2.	2
	b) Taking $\theta = 1.8$ as an initial approximation for the solution to the equation $2 \sin \theta = \theta$ between $\frac{\pi}{2}$ and π , use one application of Newton's Method to find a closer approximation.	2
4	A spherical balloon is being inflated so that its surface area is increasing at a steady rate of 12cm ² /s.	
	a) Show that $\frac{dr}{dt} = \frac{3}{2\pi r}$ where r is the radius of the balloon.	2
	b) Find the rate of increase of the volume at the instant that the surface area is $1600 \pi \text{ cm}^2$.	3
5	(i) Prove that $\frac{d^2x}{dt^2} = \frac{d(\frac{1}{2}v^2)}{dx}$ where v and x are the velocity and displacement of a particle respectively.	2
	(ii) A particle moves in a straight line with an acceleration given by $\ddot{x} = -\frac{1}{2}e^{-x}$. If $v = 1$ and $x = 0$ when $t = 0$, find the	
	a) velocity in terms of x	2
	b) displacement in terms of <i>t</i>	3

6	The speed v m/s of a particle moving along the x axis is given by $v^2 = 18 + 32x - 8x^2$, where x is the distance from the origin.	
	a) Prove that the particle is in Simple Harmonic Motion.	2
	b) Find its centre of motion and its period.	2
	c) What is the amplitude?	2
7	When the trigger of an aerosol can is depressed, the rate of decrease of the gas pressure in the can is given by $\frac{dp}{dt} = k\sqrt{p-1}$ where p is the pressure (in atmospheres) in the can after t seconds. Initially the pressure is 10 atmospheres and after 10 seconds the pressure is 5 atmospheres.	
	a) Calculate the value of k .	3
	b) Find the pressure in the can after using it for 20 seconds.	2
8	A ball is projected at an angle of elevation α with speed V from a point on the ground.	
	i) The equations of motion are given as: $x = Vt \cos \alpha$ $y = Vt \sin \alpha - \frac{1}{2}gt^{2}.$	2
	Prove that the maximum height reached is $\frac{V^2 \sin^2 \alpha}{2g}$	
	ii) The ball just clears a wall of height h m at a distance	3
	of d m from the initial point of projection.	
	Prove that the maximum height reached by the ball is:	
	$\frac{1}{4} \left(\frac{d^2 \tan^2 \alpha}{d \tan \alpha - h} \right)$	
	End of Task	

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln(x + \sqrt{x^{2} - a^{2}}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln(x + \sqrt{x^{2} + a^{2}})$$

NOTE: $\ln x = \log_e x$, x > 0

BAULKHAM HILLS HIGH SCHOOL

2013

HSC Assessment Task 3

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 60 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks – 40

This paper consists of EIGHT questions on pages 3-4.

Attempt all questions

Answer each question on the appropriate page in the answer booklet

A page of standard integrals is on page 2.

Student's	Number:	 	 	 ٠.	

Teacher: TEACHER.

Year 12 HSC Assessment Task - 3 June 2013 MATHEMATICS EXTENSION 1

Marking Cover Sheet

Basic	Skills	Problem	Solving
Question	Mark	Question	Mark
1 a)	/3	1 b)	/2
		2	/3
3 b)	/2	3 a)	/2
4 a)	/2	4 b)	/3
5 i)	/2	5 ii) a, b	/5
6 a)	- /2	6 b), c)	/4
7 b)	/2	7a)	/3
8 i)	/2	8 ii)	/3
SUB TOTAL	/15	SUB TOTAL.	/25
TOTAL		/40	
TOTAL	J		

Question	BOS#:
a)	$\frac{d(x^2+2x+2)e^{-x}}{dx}$
	dx
	-2
	$= e^{-\chi} \left[2\chi + 2 \right] + \left(\chi^2 + 2\chi + 2 \right) (-1) e^{-1}$
· -	$= e^{x} (2x + 2 - x^{2} - 2x + 2) $ (3)
	$= - \chi^2 e^{-\chi}$
	$\int e^{x}, x^{2} = \left[-\left(\frac{2}{2}+2x+2\right)e^{-x}\right]^{2}$
<u>b)</u>	$e^{-x} = -(2x + 2x + 2)e^{-x}$
	= -10e ² +5e
	$\frac{5}{e} \frac{5}{e^2} \sqrt{2}$
	_ 1.839 - 1.3534
_	= 0.4856.

BOS#:		
DUATE:		

U = Sin x			
du = cosx.	/		
dar			
			
Cosx dn =	(du/		
) It sin'x	1+42-		(3)
	tan'(u)	+ C /	
	tan' (Si'n	10c).+C/~	Replace u
			includec.
			
			
۸۰۰ د			
		·	

4	
۰	
-	

BOS#:_			

Question	3 BOS#:
a) P	$(0) = 2\sin\theta - \theta$
	$(1) = 2 \sin(1) - 1 = 0.6829$
F	O(2) = 2 Sin(2) - 2 = -0.1814
	(1) and P(2) have opposite signs and P(0) is
	Continuos in 1≤0≤2, 7 a root between 1 and 2.
(d	P, = 1.8
	$\frac{\Theta_1 = \Theta_0 - P(\theta)}{P'(\theta)}$
	= 1.8 - [2 Sin(1.8) - 1.8]
	[205(18)-1]
	= 1.8 - 0.1477 -1.4544
	= 1.9 · (3dx)/

Question 4

BOS#:

Question 4	BOS#:
	2
	$V = 4\pi r^2 \qquad V = 4\pi r^3$
dA at	= 12 cm/s
_	$\frac{1}{4\pi} = 4\pi 2r \cdot dr \sqrt{\Rightarrow} \frac{3}{\sqrt{2}} = 4\pi \cdot 2r \cdot dr \sqrt{ar}$
	$\frac{dr}{dt} = \frac{3}{2\pi r}$
b) <u>d</u>	<u> </u>
	$= 4\pi r^2 dr$
whe	$n A = 1600 \text{ Am} \qquad 1600 \text{ A} = 4 \text{ A} \text{ T}^2$ $Y = 20 \text{ V}$
. `.	dr = 150 T. 3 = 120. dt 27×20
rat	i of increase = $120 \text{ cm}^3/\text{s}$

Question 5

BOS#:	

Question 5	00011.
(i) d3c =	d (1/2 v2).
dt2	dx
LHS =	dt/
	dv. dx da dt
_	V.dv / where dx = V
	- o(b) ²)
	£ H≤ ·
1	$\frac{d\left(\frac{y}{y^2}\right) = -\frac{1}{2}e^{-\frac{x}{y}}$
1 v2 = -1	$\int e^{x} dx \implies \frac{1}{2}v^{2} + \frac{1}{2}e^{x} + k \cdot \hat{\mathbf{I}}$
when x =	0, V=1 => K=0.
	$ \begin{array}{ccc} v^2 &=& e^{x} & & & \\ \hline v^2 &=& e^{x} & & & \\ \hline v &=& e^{-hx} & & \\ \end{array} $ $ \begin{array}{cccc} dx &=& e^{-hx} & & \\ dt & & & \\ \end{array} $ $ \begin{array}{ccccc} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{ccccc} & & & \\ & & & \\ \end{array} $
	$V = e^{h^{2} \sqrt{\frac{1}{2}}}$
b) from ($D dx = e^{-hx}/\Rightarrow t = e^{2x}dx$
t=0, x=	$c = \frac{1}{2}$
002	$2e^{2x} = t+2 \implies e^{27} = t/+1$
	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$
	$2 = \frac{1}{2} \left(\frac{1}{2} \right) \sqrt{2}$

Question o	Q	uestion	ι 6
------------	---	---------	-----

BOS#:

•	
a)	$V^2 = 18 + 32 \times - 82^2$
	$1\sqrt{1} = -4x^2 + 16x + 9$
disten	enhale wrr.t x
Q1-	
	$\frac{d(k^{\nu})}{dx} = -8x + 16 $
	$\frac{dx}{x} = -8(x-2) / \qquad \frac{d^2x}{dt} = \frac{d(h^{2})}{dx}.$
	°° = - n² x when X=x-2, and
	n = 2(2
	The particle is in SHM.
b)	Centre of motion is $X=0$, is $x=2$
	period = 2π = 2π = π s / π
	n 212 12
c)	Amplitude is the max displacement from the
, 	Centre of motion. At this point v=0.
	$4x^2-16x-9=0$
	$4x^2 - 18x + 2x - 9 = 0$
	$2x(2x-9)+1(2x-9)=0 = x=4\frac{1}{2}; -\frac{1}{2}$
-1/2	
	$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$
	amplitude = 4/2-2
·	$=2V_2$ cm $$
	1

You may ask for extra writing paper if you need more space to answer question 6

Ou	estion	7
~		

BOS#: ____

a) $dP = k P - 1$ When $t = 0$ $P = 10$ dt $t = 10$ $P = 5$ $dP = k P - 1$ $t = 10$ $P = 5$ $kt = 2(P - 1)^{1/2} + C$ $0 = 2 \times 3 + C \Rightarrow C = -6 \times C$ $kt = 2(P - 1)^{1/2} - 6$ When $t = 10$ $kt = 2 \times 2 - 6$ $kt = -\frac{1}{2} \times 10 \times 10^{-1} - 6 \times 10^{-1}$ When $t = 20$ $t = 2(P - 1) = 1$ $t = 2$		
$dP_{-1} = k \int dt$ $kt = \int (P-1)^{k_{2}} dP /$ $kt = 2(P-1)^{k_{2}} + C$ $0 = 2x3 + C \Rightarrow C = -6x /$ $kt = 2(P-1)^{k_{2}} - 6$ $kt = 2(P-1)^{k_{2}} - 6$ $k = -k_{3} /$ $b) $	a) $dP = k \sqrt{P-1}$	
$kt = \int (P-1)^{1/2} dP /$ $kt = 2(P-1)^{1/2} + C$ $0 = 2\times3 + C \implies C = -6 /$ $kt = 2(P-1)^{1/2} - 6$ $kt = 2(P-1)^{1/2} - 6$ $kt = 2\times2 - 6$ $k = -1/6 /$ $k = -1/6 /$ $k = 2\sqrt{P-1} - 6 /$	dt	t=10 P=5
$kt = \int (P-1)^{1/2} dP /$ $kt = 2(P-1)^{1/2} + C$ $0 = 2\times3 + C \implies C = -6 /$ $kt = 2(P-1)^{1/2} - 6$ $kt = 2(P-1)^{1/2} - 6$ $kt = 2\times2 - 6$ $k = -1/6 /$ $k = -1/6 /$ $k = 2\sqrt{P-1} - 6 /$		
$kt = \int (P-1)^{1/2} dP /$ $kt = 2(P-1)^{1/2} + C$ $0 = 2\times3 + C \implies C = -6 /$ $kt = 2(P-1)^{1/2} - 6$ $kt = 2(P-1)^{1/2} - 6$ $kt = 2\times2 - 6$ $k = -1/6 /$ $k = -1/6 /$ $k = 2\sqrt{P-1} - 6 /$	de = K	dt
$Kt = 2(P-1)^{1/2} + C$ $0 = 2\times3 + C \implies C = -6\sqrt{2}$ $Kt = 2(P-1)^{1/2} - 6$ $When t = 10 P = 5 $	J 19-1	
$Kt = 2(P-1)^{1/2} + C$ $0 = 2\times3 + C \implies C = -6\sqrt{2}$ $Kt = 2(P-1)^{1/2} - 6$ $When t = 10 P = 5 $	0	16
$0 = 2 \times 3 + C \implies C = -6 $ $Kt = 2(P-1)^{1/2} - 6$ $When t = 10 P = 5$ $10K = 2 \times 2 - 6$ $K = -1/5 /$ $b) $	Kt = (P-1)) dp/
$0 = 2 \times 3 + C \implies C = -6 $ $Kt = 2(P-1)^{1/2} - 6$ $When t = 10 P = 5$ $10K = 2 \times 2 - 6$ $K = -1/5 /$ $b) $		V_
$Kt = 2(P-1)^{1/2} - 6$ When t=10 P=5 10K = 2x2 - 6 $K = \frac{1}{5}\sqrt{5}$ b) -1t = 2\[P-1\] - 6. When t = 20 $-1 \times 2^{\frac{1}{5}} = 2\sqrt{P-1} - 6\sqrt{5}$ $P = 2\sqrt{P-1}$ $P = 2\sqrt{5}$	Kt= 2(P-1)	1 + C
When $t=10 P=5$ $10K = 2x2-6$ $K = -\frac{1}{5}\sqrt{5}$ When $t=20$ $-\frac{1}{5}x26 = 2\sqrt{10}-10$ $x=20$ x		<u>.</u>
b) $-1 + = 2 \cdot P - 1 - 6$. When $t = 20$ $-1 \times 26 = 2 \cdot P - 1 - 6 /$ $5 \times = 2 \cdot P - 1$ $P - 1 = 1$ $P = 2 \cdot $		
When $t = 20$ $-\frac{1}{5} \times \frac{25}{5} = 2\sqrt{P-1} - 6\sqrt{\frac{25}{5}}$ $P = 2\sqrt{\frac{1}{5}}$ $P = 2\sqrt{\frac{1}{5}}$	<u> </u>	< = -1/s /
When $t = 20$ $-\frac{1}{5} \times \frac{25}{5} = 2\sqrt{P-1} - 6\sqrt{\frac{25}{5}}$ $P = 2\sqrt{\frac{1}{5}}$ $P = 2\sqrt{\frac{1}{5}}$	b) -1 t = 2	P-1 - 6.
$-\frac{1}{5} \times \frac{25}{5} = 2\sqrt{P-1}$ $P-1 = 1$ $P = 2 \sqrt{\frac{1}{5}}$		
$P-1 = 1$ $P = 2 \cdot $	When == 20	
$P-1 = 1$ $P = 2 \cdot $	-1×2	5 = 2 \ P-1 - 6 \
P = 2 ./		= 2(P-1
P = 2.V after 20 S pressure in the Can is 2 Atmospheres.	P-1	=)
after 20 S pressure in the Can is 2 Atmospheres.		P = 2 ./
	after 20 S pressi	in the Can is 2 Atmospheres.
	, , , , , , , , , , , , , , , , , , , ,	

· ·	 	
		'
	*	
	 	· · · · · · · · · · · · · · · · · · ·
	 	· · · · · · · · · · · · · · · · · · ·
}		
	 	<u> </u>
-,, -,,-	 	
	•	
	 ·	- · · · · · · · · · · · · · · · · · · ·
		

Question	8
----------	---

Question 8	RC	JS#:
i) x = Vtc	sx -(D	y=VESA-1/28E2-0
ઝ̃ι = V60.	<u>s</u>	ÿ = V& α - g15.
at the hig	hest point y	=0. ie.
	V&nor-gt	= 0 ·
	b _{max} =	Vsind /
In this time	. height rea	ched is y.
<u>.'.</u> y	= V.Sind	(VMX) - 18 (V3124)/
	144X	1 V ² G ² 2
• •	· 9	$\frac{1}{2} = \frac{V^2 \sin^2 \alpha}{2}$
		9.
	2	9.
(ii) from (1)	F = X	; Sub this in (2)
y = v	Sind. X _	19 x2-
y =	xtand -	- 19 x2 - 3 V
when the	ball pass	clears the wall x=d, y=h
Sub in	(3)	
h =	- dtana	_ 19 <u>d</u>
\Rightarrow	v - d	2

12 w (A)	= Sind; at / 2 (d+ama-h)2:wid	1 d2-ton 2 4 (d/5md-h)	- L d tand -h				