BAULKHAM HILLS HIGH SCHOOL
2015
YEAR 12
TERM 2 ASSESSMENTS

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 60 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work

Total marks - 45

- Attempt Questions 1-4
- All questions are NOT of equal value

Total marks - 45

Attempt Questions 1-4

All questions are NOT of equal value

Answer each question on the appropriate answer sheet. Each answer sheet must show your BOS\#. Extra paper is available.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 1 (12 marks) Use a separate piece of paper
a) (i) Between which two integers does $\sqrt{5}$ lie?
(ii) Using repeated applications of the "halving the interval" method, to approximate $\sqrt{5}$, correct to one decimal place.
b) Use the given substitution to evaluate the following integrals.
(i) $\int 6 x \sqrt{9-x^{2}} d x$ using $\quad u=9-x^{2}$
$\frac{3}{2}$
(ii) $\int_{0} \frac{d x}{\sqrt{9-x^{2}}}$
using $x=3 \sin \theta$
(iii) $\int \frac{-\sin 2 x}{2+3 \cos ^{2} x} d x$ using $\quad u=2+3 \cos ^{2} x$

Question 2 (9 marks) Use a separate piece of paper
a) Below is a graph of $y=x^{3}+3 x^{2}-24 x-40$.

(i) Explain why $x=0$ would not be a good first approximation in order to find the positive solution to $x^{3}+3 x^{2}-24 x-40=0$ using Newton's Method.
(ii) Give an example of an approximation to $x^{3}+3 x^{2}-24 x-40=0$ that would fail to find any solution using Newton's Method, and explain why it would fail.
(iii) Using Newton's Method, find the positive solution to $x^{3}+3 x^{2}-24 x-40=0, \quad 3$ correct to two decimal places.
b) If $\ddot{x}=e^{-x}$ and initially the particle is observed to be at $x=0$ with a velocity of 3 $2 \mathrm{~m} / \mathrm{s}$, find v^{2} as a function of x.

Marks

Question 3 (12 marks) Use a separate piece of paper
a) The velocity of a particle moving along the x-axis is given by $v^{2}=36-6 x-2 x^{2}$, where x is in metres.
(i) Prove that the particle is moving in Simple Harmonic Motion.
(ii) Find the path that the particle travels.
b) An object is projected horizontally from the top of a vertical cliff 40 metres above sea level with a velocity of $40 \mathrm{~m} / \mathrm{s}$. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(i) Using the top edge of the cliff as the origin, prove that the equations of motion are given by;

$$
x=40 t \quad \text { and } \quad y=-5 t^{2}
$$

(ii) Calculate when and where the object hits the water.
(iii) Find the speed of the object and the angle it makes with the water, the instant it hits the water.

Question 4 (12 marks) Use a separate piece of paper
a) A particle is travelling in simple harmonic motion such that its displacement x metres from the origin is given by $\ddot{x}=-4 x$.
(i) Show that $x=A \cos (2 t+\beta)$ is a possible equation of motion for the particle, where A and β are positive constants.
(ii) The particle is initially observed to have a velocity of $2 \mathrm{~m} / \mathrm{s}$ and a displacement 2 from the origin of 4 metres. Show that the amplitude of the motion is $\sqrt{17}$ metres.
(iii) Determine the maximum speed of the particle.
b) Sudarshan is in a pool holding a hose at an angle of θ to the surface of the water and water is leaving the hose with a velocity of $V \mathrm{~m} / \mathrm{s}$. The water from the hose hits the surface of the water at a distance R metres from Sudarshan.

Using the equations of motion;

$$
x=V t \cos \theta \quad \text { and } \quad y=V t \sin \theta-\frac{1}{2} g t^{2} \quad \text { (Do NOT prove this) }
$$

(i) Show that $R=\frac{V^{2} \sin 2 \theta}{g}$
(ii) Explain why the maximum range occurs when $\theta=45^{\circ}$
(iii) Sudarshan moves the hose so that the angle θ changes at a constant rate
$\frac{d \theta}{d t}=k$, from an initial value of $\theta=30^{\circ}$.
Prove that $\frac{d R}{d t}=\frac{2 k V^{2} \cos 2 \theta}{g}$
(iv) Find $\frac{d^{2} R}{d t^{2}}$ and hence show that the motion is simple harmonic.

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
& =\frac{1}{a} \sin a x, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \cos a x, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \sec ^{2} a x d x \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin \frac{1}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
&
\end{array}
$$

NOTE: $\ln x=\log x, \quad x>0$

BAULKHAM HILLS HIGH SCHOOL

YEAR 12 EXTENSION 1 TERM 2 ASSESSMENT 2015 SOLUTIONS

Solution	Marks	Comments
QUESTION 1		
1 (a) (i) $\sqrt{5}$ lies in between 2 and 3	1	1 mark - Correct answer
1 (a) (ii) $f(x)=x^{2}-5=0$	2	2 marks - Correct solution using an appropriate number of iterations 1 mark - Correctly applies the "halving the interval" method at least once
$\text { 1 (b) (i) } \begin{array}{rlrl} & \int 6 x \sqrt{9-x^{2}} d x & \begin{aligned} u & =9-x^{2} \\ d u & =-2 x d x \end{aligned} \\ = & -3 \int \sqrt{u} d u \\ & =-3 \times \frac{2}{3} u \sqrt{u}+c \\ = & -2\left(9-x^{2}\right) \sqrt{9-x^{2}}+c & \end{array}$	3	3 marks - Correct solution using the given substitution 2 marks - Correct primitive in terms of u 1 mark - Correct integrand in terms of u - Correctly finds answer using an alternative approach
$1 \text { (b) (ii) } \begin{array}{rlr} \int_{0}^{\frac{3}{2}} \frac{d x}{\sqrt{9-x^{2}}} & =\int_{0}^{\frac{\pi}{6}} \frac{3 \cos \theta d \theta}{\sqrt{9-9 \sin ^{2} \theta}} & \begin{array}{c} x=3 \sin \theta \\ d x=3 \cos \theta d \theta \end{array} \\ & =\int_{0}^{\frac{\pi}{6}} \frac{3 \cos \theta d \theta}{3 \cos \theta} & \text { when } x=0, \theta=0 \\ \text { when } x=\frac{3}{2}, \theta=\frac{\pi}{6} \end{array}$	3	3 marks - Correct solution using the given substitution - Note: solving as an indefinite integral, then using answer to find definite integral is acceptable 2 marks - Correct primitive in terms of θ - Correct integrand in terms of θ, including the correct limits 1 mark - Correct integrand in terms of θ without the limits - Correctly finds answer using an alternative approach
$\text { 1 (b) (iii) } \begin{array}{rlrl} & \int \frac{-\sin 2 x}{2+3 \cos ^{2} x} d x & \begin{aligned} u & =2+3 \cos ^{2} x \\ d u & =-6 \cos x \sin x d x \end{aligned} \\ & =\frac{1}{3} \int \frac{d u}{u} & & =-3 \sin 2 x d x \\ & =\frac{1}{3} \ln u+c & \\ = & \frac{1}{3} \ln \left(2+3 \cos ^{2} x\right)+c & \end{array}$	3	3 marks - Correct solution using the given substitution 2 marks - Correct primitive in terms of u 1 mark - Correct integrand in terms of u - Correctly finds answer using an alternative approach

Solution	Marks	Comments
QUESTION 2		
2(a) (i) The tangent at $x=0$ would cut the x-axis close to $x=-2$, which would be a good approximation to one of the negative solutions, but not the positive solution. This occurred because $x=0$ is on the opposite side of the stationary point to the positive solution.	1	1 mark - Valid explanation
2(a) (ii) The approximation would fail at either stationary point, as the tangent would be horizontal meaning it will never cut the x-axis. In addition, if it is a stationary point then the derivative is zero at this point so zero would be substituted into the denominator of Newton's formula, thus making it undefined. Stationary points are $x=2$ and $x=-4$	2	2 marks - Locate a correct example with a valid explanation 1 mark - Locates a correct example
2 (a) (iii) $f(x)=x^{3}+3 x^{2}-24 x-40 \quad f^{\prime}(x)=3 x^{2}+6 x-24$ $\begin{aligned} x_{0}=4 & x_{1} & =4-\frac{f(4)}{f^{\prime}(4)} & x_{2} \end{aligned}=4.5-\frac{f(4.5)}{f^{\prime}(4.5)} \quad x_{3}=4.44-\frac{f(4.44)}{f^{\prime}(4.44)}$ $\therefore x=4.44$ is the positive solution, correct to two decimal places	3	3 marks - Correctly finds the approximation to the positive solution 2 marks - Finds one of the negative solutions - Correctly uses Newton's Method at least once 1 mark - Attempts to apply Newton's Method by using a correct formula
2 (b) $\begin{aligned} \frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =e^{-x} & \text { OR } & v \frac{d v}{d x} \end{aligned}=e^{-x} .$	3	3 marks - Correct solution 2 marks - Finds an expression for v^{2} using a correct method 1 mark - Identifies that $\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$ or equivalent expression linking velocity and displacement

Solution	Marks	Comments
QUESTION 3		
3 (a) (i) $\begin{aligned} v^{2} & =36-6 x-2 x^{2} \\ \frac{1}{2} v^{2} & =72-12 x-4 x^{2} \\ \ddot{x} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\ & =-12-8 x \\ & =-8\left(x+\frac{3}{2}\right) \\ & \therefore \ddot{x}=-n^{2} X, \text { where } \quad n=2 \sqrt{2} \quad \text { and } \quad X=x+\frac{3}{2} \end{aligned}$	2	2 marks - Correct solution 1 mark - Identifies the condition for SHM - Finds an expression for acceleration in terms of displacement
3 (a) (ii) $\begin{aligned} & v^{2} \geq 0 \\ & 36-6 x-2 x^{2} \geq 0 \\ & x^{2}+3 x-18 \leq 0 \\ &(x+6)(x-3) \leq 0 \\ &-6 \leq x \leq 3 \end{aligned}$ The particle oscillates between $x=-6$ and $x=3$	2	2 marks - Correct solution 1 mark - Progress towards solution using valid methods
3 (b) (i)\ddot{x} $=0$ \ddot{y} $=-10$ \dot{x} $=c_{1}$ \dot{y} $=-10 t+c_{3}$ when when t $=0, \dot{x}=40$ t $=0, \dot{y}=0$ $\therefore 40$ $=c_{1}$ $\therefore 0$ $=0+c_{3}$ \dot{x} $=40$ c_{3} $=0$ x $=40 t+c_{2}$ \dot{y} $=-10 t$ when y $=-5 t^{2}+c_{4}$ t $=0, x=0$ when $\therefore 0$ $=0+c_{2}$ t $=0, y=0$ c_{2} $=0$ $\therefore 0$ $=0+c_{4}$ x $=40 t$ c_{4} $=0$ y $=-5 t^{2}$	3	3 marks - Correct solution 2 marks - Correctly proves equation of motion for either x or y - Finds both equations without explicitly finding the value of the constants. 1 mark - Finds equations for both \dot{x} and \dot{y}
$3 \text { (b) (ii) Object hits the water when } y=-40 \quad \text { When } t=2 \sqrt{2} ; ~ \begin{array}{rlr} \text { i.e. }-5 t^{2}=-40 & x=40(2 \sqrt{2}) \\ t^{2}=8 & =80 \sqrt{2} \end{array}$ Object hits the water after $2 \sqrt{2}$ seconds, $80 \sqrt{2}$ metres from the base of the cliff.	2	2 marks - Correct solution 1 mark - Finds when it hits the water - Finds where it hits the water.
3 (b) (iii) When $t=2 \sqrt{2}$; $\begin{aligned} \dot{x}=40 \quad \text { and } \quad \dot{y} & =-10(2 \sqrt{2}) \\ & =-20 \sqrt{2} \end{aligned}$ $\begin{aligned} V^{2} & =40^{2}+(20 \sqrt{2})^{2} \\ & =2400 \\ V & =\sqrt{2400} \\ & =20 \sqrt{6} \end{aligned}$ $\begin{aligned} \tan \alpha & =\frac{20 \sqrt{2}}{40} \\ & =\frac{1}{\sqrt{2}} \\ \alpha & =35.264 \ldots . . \end{aligned}$ \therefore object hits the water at a speed of $20 \sqrt{6} \mathrm{~m} / \mathrm{s}$ at an angle of 35° to the water	3	3 marks - Correct solution Note: angle can be either acute or obtuse 2 marks - Finds the velocity of the object - Finds the angle the object makes with the water (either acute or obtuse) 1 mark - Calculates the horizontal and vertical components of the velocity Note: correct answers based upon time found in part (ii) should be marked correct.

Solution	Marks	Comments
QUESTION 4 Mans		
4 (a) (i) $\begin{aligned} x & =A \cos (2 t+\beta) \\ \dot{x} & =-2 A \sin (2 t+\beta) \\ \ddot{x} & =-4 A \cos (2 t+\beta) \\ & =-4 x \end{aligned}$ Thus $x=A \cos (2 t+\beta)$ is a possible equation of motion.	2	2 marks - Correct solution 1 mark - Attempts to find acceleration as a function of time
$\begin{array}{rlrl} \hline 4 \text { (a) (ii) when } t=0, x=4, v=2 ; & & \\ \begin{aligned} x=A \cos (2 t+\beta) & & \\ 4=A \cos \beta & & =2 A \sin (2 t+\beta) \\ 16=A^{2} \cos ^{2} \beta & & 4=4 A^{2} \sin ^{2} \beta \\ & 1 & =A^{2} \sin ^{2} \beta \end{aligned} \\ A^{2} \cos ^{2} \beta+A^{2} \sin ^{2} \beta=17 & \\ A^{2}=17 & \\ A=\sqrt{17} & & \end{array}$ \therefore amplitude of the motion is $\sqrt{17}$ metres	2	2 marks - Successfully shows result 1 mark - Uses initial conditions in a valid attempt to show the given result
$4 \text { (a) (iii) } \dot{x}=-2 A \sin (2 t+\beta)$ \therefore maximum speed of the particle is $2 A=2 \sqrt{17} \mathrm{~m} / \mathrm{s}$	1	1 mark - Correct answer
4 (b) (i) $\begin{aligned} & x=V t \cos \theta \\ & \text { when } x=R ; \\ & R=V t \cos \theta \\ & t=\frac{R}{V \cos \theta} \end{aligned}$ $\begin{aligned} & y=V t \sin \theta-\frac{1}{g t^{2}} \\ & \text { when } y=0 ; \\ & 0=V\left(\frac{R}{V \cos \theta}\right) \sin \theta-\frac{1}{2} g\left(\frac{R}{V \cos \theta}\right)^{2} \\ & 0=\frac{R \sin \theta}{\cos \theta}-\frac{g R^{2}}{2 V^{2} \cos ^{2} \theta} \\ & 0=2 V^{2} R \sin \theta \cos \theta-g R^{2} \\ & 0=R\left(2 V^{2} \sin \theta \cos \theta-g R\right) \\ & R=0 \text { or } R=\frac{2 V^{2} \sin \theta \cos \theta}{g} \\ & \qquad=\frac{V^{2} \sin 2 \theta}{g} \\ & \text { But } R \neq 0, \therefore R=\frac{V^{2} \sin 2 \theta}{g} \end{aligned}$	2	2 marks - Correct solution 1 mark - Eliminates t from the parametric equations
4 (b) (ii) $\frac{V^{2}}{g}$ is constant, thus R is a maximum when $\sin 2 \theta$ is a maximum maximum $\sin 2 \theta$ occurs when $2 \theta=90^{\circ}$ i.e. $\theta=45^{\circ}$	1	1 mark - Correct explanation
$\text { 4 (b) (iii) } \begin{aligned} \frac{d R}{d t} & =\frac{d R}{d \theta} \times \frac{d \theta}{d t} \\ & =\frac{2 V^{2} \cos 2 \theta}{g} \times k \\ & =\frac{2 k V^{2} \cos 2 \theta}{g} \end{aligned}$	2	2 marks - Correct solution 1 mark - Finds $\frac{d R}{d \theta}$
$4 \text { (b) (iv) } \begin{aligned} \frac{d^{2} R}{d t^{2}} & =\frac{d}{d t}\left(\frac{d R}{d t}\right) \\ & =\frac{d}{d \theta}\left(\frac{d R}{d t}\right) \times \frac{d \theta}{d t} \\ & =-\frac{4 k V^{2} \sin 2 \theta}{g} \times k \\ & =-\frac{4 k^{2} V^{2} \sin 2 \theta}{g} \\ & =-4 k^{2} R \\ & \therefore \text { motion is SHM as } \quad \ddot{x}=-n^{2} x, \text { where } n=2 k \end{aligned}$	2	2 marks - Correct solution 1 mark - Finds $\frac{d^{2} R}{d t^{2}}$ in terms of θ

