

BAULKHAM HILLS HIGH SCHOOL

2015 YEAR 12 TERM 2 ASSESSMENTS

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 60 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work

Total marks – 45

- Attempt Questions 1 4
- All questions are NOT of equal value

Total marks – 45 Attempt Questions 1 – 4 All questions are NOT of equal value

Answer each question on the appropriate answer sheet. Each answer sheet must show your BOS#. Extra paper is available.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 1 (12 marks) Use a separate piece of paper		
a) (i)	Between which two integers does $\sqrt{5}$ lie?	1
(ii)	Using repeated applications of the "halving the interval" method, to approximate $\sqrt{5}$, correct to one decimal place.	2

b) Use the given substitution to evaluate the following integrals.

(i)
$$\int 6x\sqrt{9-x^2} dx$$
 using $u = 9-x^2$ 3

(ii)
$$\int_{0}^{\frac{3}{2}} \frac{dx}{\sqrt{9-x^2}}$$
 using $x = 3\sin\theta$ 3

(iii)
$$\int \frac{-\sin 2x}{2 + 3\cos^2 x} dx \qquad \text{using} \qquad u = 2 + 3\cos^2 x \qquad 3$$

Marks

Question 2 (9 marks) Use a separate piece of paper

a) Below is a graph of $y = x^3 + 3x^2 - 24x - 40$.

- (i) Explain why x = 0 would not be a good first approximation in order to find l the positive solution to $x^3 + 3x^2 24x 40 = 0$ using Newton's Method.
- (ii) Give an example of an approximation to $x^3 + 3x^2 24x 40 = 0$ that would 2 fail to find any solution using Newton's Method, and explain why it would fail.
- (iii) Using Newton's Method, find the positive solution to $x^3 + 3x^2 24x 40 = 0$, 3 correct to two decimal places.
- b) If $\ddot{x} = e^{-x}$ and initially the particle is observed to be at x = 0 with a velocity of 2 m/s, find v^2 as a function of x.

Question 3 (12 marks) Use a separate piece of paper

- a) The velocity of a particle moving along the x-axis is given by $v^2 = 36 6x 2x^2$, where x is in metres.
 - (i) Prove that the particle is moving in Simple Harmonic Motion.
 - (ii) Find the path that the particle travels.
- b) An object is projected horizontally from the top of a vertical cliff 40 metres above sea level with a velocity of 40 m/s. (Take $g = 10 \text{ m/s}^2$)

(i) Using the top edge of the cliff as the origin, prove that the equations of motion 3 are given by;

$$x = 40t$$
 and $y = -5t^2$

- (ii) Calculate when and where the object hits the water.
- (iii) Find the speed of the object and the angle it makes with the water, the instant it 3 hits the water.

Marks

2

2

2

Question 4 (12 marks) Use a separate piece of paper

- a) A particle is travelling in simple harmonic motion such that its displacement xmetres from the origin is given by $\ddot{x} = -4x$.
 - (i) Show that $x = A\cos(2t + \beta)$ is a possible equation of motion for the particle, 2 where A and β are positive constants.
 - (ii) The particle is initially observed to have a velocity of 2 m/s and a displacement 2from the origin of 4 metres. Show that the amplitude of the motion is $\sqrt{17}$ metres.
 - (iii) Determine the maximum speed of the particle.
- Sudarshan is in a pool holding a hose at an angle of θ to the surface of the water b) and water is leaving the hose with a velocity of Vm/s. The water from the hose hits the surface of the water at a distance R metres from Sudarshan.

Using the equations of motion;

$$x = Vt\cos\theta$$
 and $y = Vt\sin\theta - \frac{1}{2}gt^2$ (Do NOT prove this)
(i) Show that $R = \frac{V^2\sin 2\theta}{g}$ 2

(ii) Explain why the maximum range occurs when $\theta = 45^{\circ}$

1

1

2 (iii) Sudarshan moves the hose so that the angle θ changes at a constant rate $\frac{d\theta}{dt} = k$, from an initial value of $\theta = 30^{\circ}$. Prove that $\frac{dR}{dt} = \frac{2kV^2\cos 2\theta}{g}$ 2

(iv) Find $\frac{d^2 R}{dt^2}$ and hence show that the motion is simple harmonic.

~ END OF EXAMINATION ~

STANDARD INTEGRALS

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{ if } n < 0$ $\int \frac{1}{r} dx = \ln x, \ x > 0$ $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + r^2} \, dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx \qquad = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE: $\ln x = \log x, x > 0$

BAULKHAM HILLS HIGH SCHOOL YEAR 12 EXTENSION 1 TERM 2 ASSESSMENT 2015 SOLUTIONS

Solution OUESTION 1	Marks	Comments
QUESTION I 1 (a) (i) $\sqrt{5}$ lies in between 2 and 3	1	1 mark
	1	• Correct answer
1 (a) (ii) $f(x) = x^{2} - 5 = 0$ $f(2) = 2^{2} - 5 = -1 < 0$ $x_{1} = \frac{2+3}{2}$ $x_{2} = \frac{2+2.5}{2}$ $f(3) = 3^{2} - 5 = 4 > 0$ $x_{3} = \frac{2+2.25}{2}$ $x_{3} = \frac{2+2.25}{2}$ $= 2.5$ $f(2.5) = (2.5)^{2} - 5$ $f(2.25) = (2.25)^{2} - 5$ $f(2.13) = (2.13)^{2} - 5$ $= 1.25 > 0$ $= 0.0625 > 0$ $= -0.44631 < 0$ $\therefore 2 < \sqrt{5} < 2.25$ $\therefore 2 < \sqrt{5} < 2.25$ $\therefore 2.13 < \sqrt{5} < 2.25$	2	 2 marks Correct solution using an appropriate number of iterations 1 mark Correctly applies the "halving the interval" method at least once
$x_{4} = \frac{2.13 + 2.25}{2}$ = 2.19 $f(2.19) = (2.19)^{2} - 5$ = -0.2039 < 0 :.2.19 < $\sqrt{5}$ < 2.25 : $\sqrt{5}$ = 2.2 correct to one decimal place		
1 (b) (i) $\int 6x\sqrt{9-x^2} dx$ $= -3\int \sqrt{u} du$ $= -3 \times \frac{2}{3}u\sqrt{u} + c$ $= -2(9-x^2)\sqrt{9-x^2} + c$	3	 3 marks Correct solution using the given substitution 2 marks Correct primitive in terms of <i>u</i> 1 mark Correct integrand in terms of <i>u</i> Correctly finds answer using an alternative approach
1 (b) (ii) $\int_{0}^{\frac{3}{2}} \frac{dx}{\sqrt{9-x^{2}}} = \int_{0}^{\frac{\pi}{6}} \frac{3\cos\theta d\theta}{\sqrt{9-9\sin^{2}\theta}} \qquad x = 3\sin\theta \qquad \text{when } x = 0, \ \theta = 0 \\ dx = 3\cos\theta d\theta \qquad \text{when } x = \frac{3}{2}, \ \theta = \frac{\pi}{6}$ $= \int_{0}^{\frac{\pi}{6}} \frac{3\cos\theta d\theta}{3\cos\theta}$ $= \int_{0}^{\frac{\pi}{6}} d\theta$ $= \int_{0}^{\frac{\pi}{6}} \frac{\pi}{6}$ $= \frac{\pi}{6}$	3	 3 marks Correct solution using the given substitution Note: solving as an indefinite integral, then using answer to find definite integral is acceptable 2 marks Correct primitive in terms of <i>θ</i> Correct integrand in terms of <i>θ</i>, including the correct limits 1 mark Correct integrand in terms of <i>θ</i> without the limits Correctly finds answer using an alternative approach
1 (b) (iii) $\int \frac{-\sin 2x}{2 + 3\cos^2 x} dx$ $= \frac{1}{3} \int \frac{du}{u}$ $= \frac{1}{3} \ln u + c$ $= \frac{1}{3} \ln (2 + 3\cos^2 x) + c$ $u = 2 + 3\cos^2 x$ $du = -6\cos x \sin x dx$ $= -3\sin 2x dx$	3	 3 marks Correct solution using the given substitution 2 marks Correct primitive in terms of <i>u</i> 1 mark Correct integrand in terms of <i>u</i> Correctly finds answer using an alternative approach

	Solution	Marks	Comments	
QUESTION 2				
2(a) (i)	The tangent at $x = 0$ would cut the <i>x</i> -axis close to $x = -2$, which would be a good approximation to one of the negative solutions, but not the positive solution. This occurred because $x = 0$ is on the opposite side of the stationary point to the positive solution.	1	1 mark • Valid explanation	
2(a) (ii)	The approximation would fail at either stationary point, as the tangent would be horizontal meaning it will never cut the <i>x</i> -axis. In addition, if it is a stationary point then the derivative is zero at this point so zero would be substituted into the denominator of Newton's formula, thus making it undefined. Stationary points are $x = 2$ and $x = -4$	2	 2 marks Locate a correct example with a valid explanation 1 mark Locates a correct example 	
2 (a) (iii) x	$f(x) = x^{3} + 3x^{2} - 24x - 40 \qquad f'(x) = 3x^{2} + 6x - 24$ $a_{0} = 4 \qquad x_{1} = 4 - \frac{f(4)}{f(4)} \qquad x_{2} = 4.5 - \frac{f(4.5)}{f(4.5)} \qquad x_{3} = 4.44 - \frac{f(4.44)}{f(4.44)}$ $= 4 - \frac{-24}{48} \qquad = 4.5 - \frac{3.875}{63.75} \qquad = 4.44 - \frac{0.109184}{61.7808}$ $= 4.5 \qquad = 4.44 \qquad = 4.44$ $\therefore x = 4.44 \text{ is the positive solution, correct to two decimal places}$	3	 3 marks Correctly finds the approximation to the positive solution 2 marks Finds one of the negative solutions Correctly uses Newton's Method at least once 1 mark Attempts to apply Newton's Method by using a correct formula 	
2 (b)	$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = e^{-x} \qquad \text{OR} \qquad v\frac{dv}{dx} = e^{-x}$ $\frac{1}{2}v^{2} = -e^{-x} + c \qquad \qquad \int_{2}^{v} v dv = \int_{0}^{x} e^{-x} dx$ when $x = 0, v = 2$ $4 = -2e^{0} + c$ $c = 6$ $v^{2} = 6 - 2e^{-x}$ $\frac{1}{2}v^{2} = -e^{-x} + 1$ $\frac{1}{2}v^{2} = -e^{-x} + 3$ $v^{2} = 6 - 2e^{-x}$	3	3 marks • Correct solution 2 marks • Finds an expression for v^2 using a correct method 1 mark • Identifies that $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$ or equivalent expression linking velocity and displacement	

Solution	Marks	Comments
QUESTION 3		
3 (a) (i) $v^2 = 36 - 6x - 2x^2$ $\frac{1}{2}v^2 = 72 - 12x - 4x^2$ $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$ = -12 - 8x $= -8\left(x + \frac{3}{2}\right)$ $\therefore \ddot{x} = -n^2 X$, where $n = 2\sqrt{2}$ and $X = x + \frac{3}{2}$ 3 (a) (ii) $v^2 \ge 0$	2	 2 marks Correct solution 1 mark Identifies the condition for SHM Finds an expression for acceleration in terms of displacement 2 marks Correct solution
$36 - 6x - 2x^{-2} \ge 0$ $x^{2} + 3x - 18 \le 0$ $(x + 6)(x - 3) \le 0$ $-6 \le x \le 3$ The particle oscillates between $x = -6$ and $x = 3$	2	 Progress towards solution using valid methods
3 (b) (i) $\ddot{x} = 0$ $\ddot{y} = -10$ $\dot{x} = c_1$ $\dot{y} = -10t + c_3$ when $t = 0$, $\dot{x} = 40$ $t = 0$, $\dot{y} = 0$ $\therefore 40 = c_1$ $\therefore 0 = 0 + c_3$ $\dot{x} = 40$ $c_3 = 0$ $x = 40t + c_2$ $\dot{y} = -10t$ when $y = -5t^2 + c_4$ t = 0, $x = 0$ when $\therefore 0 = 0 + c_2$ $t = 0$, $y = 0$ $c_2 = 0$ $\therefore 0 = 0 + c_4$ $x = 40t$ $c_4 = 0$ $y = -5t^2$	3	 3 marks Correct solution 2 marks Correctly proves equation of motion for either <i>x</i> or <i>y</i> Finds both equations without explicitly finding the value of the constants. 1 mark Finds equations for both <i>x</i> and <i>y</i>
3 (b) (ii) Object hits the water when $y = -40$ When $t = 2\sqrt{2}$; i.e. $-5t^2 = -40$ $x = 40(2\sqrt{2})$ $t^2 = 8$ $= 80\sqrt{2}$ $t = 2\sqrt{2}$ Object hits the water after $2\sqrt{2}$ seconds, $80\sqrt{2}$ metres from the base of the cliff.	2	 2 marks Correct solution 1 mark Finds when it hits the water Finds where it hits the water.
3 (b) (iii) When $t = 2\sqrt{2}$; $\dot{x} = 40$ and $\dot{y} = -10(2\sqrt{2})$ $= -20\sqrt{2}$ $20\sqrt{2}$ v' 40 $V^2 = 40^2 + (20\sqrt{2})^2$ = 2400 $V = \sqrt{2400}$ $= 20\sqrt{6}$ \dot{x} object hits the water at a speed of $20\sqrt{6}$ m/s at an angle of 35° to the water	3	 3 marks Correct solution Note: angle can be either acute or obtuse 2 marks Finds the velocity of the object Finds the angle the object makes with the water (either acute or obtuse) 1 mark Calculates the horizontal and vertical components of the velocity Note: correct answers based upon time found in part (ii) should be marked correct.

Solution	Marks	Comments
QUESTION 4		
4 (a) (i) $x = A\cos(2t + \beta)$ $\dot{x} = -2A\sin(2t + \beta)$ $\ddot{x} = -4A\cos(2t + \beta)$ = -4x Thus $x = A\cos(2t + \beta)$ is a possible equation of motion.	2	 2 marks Correct solution 1 mark Attempts to find acceleration as a function of time
4 (a) (ii) when $t = 0$, $x = 4$, $v = 2$; $x = A\cos(2t + \beta)$ $4 = A\cos\beta$ $16 = A^2\cos^2\beta$ $A^2\cos^2\beta + A^2\sin^2\beta = 17$ $A^2 = 17$ $A = \sqrt{17}$ \therefore amplitude of the motion is $\sqrt{17}$ metres	2	 2 marks Successfully shows result 1 mark Uses initial conditions in a valid attempt to show the given result
4 (a) (iii) $\dot{x} = -2A\sin(2t + \beta)$ \therefore maximum speed of the particle is $2A = 2\sqrt{17}$ m/s	1	1 mark • Correct answer
4 (b) (i) $x = Vt\cos\theta$ when $x = R$; $R = Vt\cos\theta$ $t = \frac{R}{V\cos\theta}$ $0 = V\left(\frac{R}{V\cos\theta}\right)\sin\theta - \frac{1}{2}g\left(\frac{R}{V\cos\theta}\right)^2$ $0 = V\left(\frac{R}{V\cos\theta}\right)\sin\theta - \frac{1}{2}g\left(\frac{R}{V\cos\theta}\right)^2$ $0 = \frac{R\sin\theta}{\cos\theta} - \frac{gR^2}{2V^2\cos^2\theta}$ $0 = 2V^2R\sin\theta\cos\theta - gR^2$ $0 = R(2V^2\sin\theta\cos\theta - gR)$ $R = 0 \text{ or } R = \frac{2V^2\sin\theta\cos\theta}{g}$ $= \frac{V^2\sin2\theta}{g}$ But $R \neq 0, \therefore R = \frac{V^2\sin2\theta}{g}$	2	 2 marks Correct solution 1 mark Eliminates <i>t</i> from the parametric equations
4 (b) (ii) $\frac{V^2}{g}$ is constant, thus <i>R</i> is a maximum when sin 2θ is a maximum maximum sin 2θ occurs when $2\theta = 90^\circ$ i.e. $\theta = 45^\circ$	1	1 markCorrect explanation
4 (b) (iii) $\frac{dR}{dt} = \frac{dR}{d\theta} \times \frac{d\theta}{dt}$ $= \frac{2V^2 \cos 2\theta}{g} \times k$ $= \frac{2kV^2 \cos 2\theta}{g}$	2	2 marks • Correct solution 1 mark • Finds $\frac{dR}{d\theta}$
4 (b) (iv) $\frac{d^2 R}{dt^2} = \frac{d}{dt} \left(\frac{dR}{dt} \right)$ $= \frac{d}{d\theta} \left(\frac{dR}{dt} \right) \times \frac{d\theta}{dt}$ $= -\frac{4kV^2 \sin 2\theta}{g} \times k$ $= -\frac{4k^2 V^2 \sin 2\theta}{g}$ $= -4k^2 R$ $\therefore \text{ motion is SHM as } \ddot{x} = -n^2 x, \text{ where } n = 2k$	2	2 marks • Correct solution 1 mark • Finds $\frac{d^2 R}{dt^2}$ in terms of θ