

BAULKHAM HILLS
HIGH
SCHOOL

Mathematics Extension 1

General
 Instructions

- Reading time - 5 minutes
- Working time - 60 minutes
- Write using black or blue pen

Black pen is preferred

- Board-approved calculators may be used
- Show all relevant mathematical reasoning and/or calculations
- Marks may be deducted for careless or badly arranged work
- A reference sheet is provided at the back of this paper

Total marks: Attempt all Questions 1 - 4 (pages 2-5)

Question 1 (9 Marks) Start on the appropriate page of your answer booklet.

a) Find the value of the constant term in the expansion of $\left(3 x^{2}+\frac{2}{x}\right)^{12}$.
b) The motion of an object is defined by the equation $x=4 \sin (\pi t)$ where x is the displacement from the origin in centimetres at time t seconds.
(i) Write down the amplitude of the motion. $\mathbf{1}$
(ii) What is the period of the motion in seconds? $\mathbf{1}$
(iii) What is the greatest speed of the object? $\mathbf{1}$
(iv) Prove that the object is moving in Simple Harmonic Motion. $\mathbf{1}$
c) A 5 metre ladder rests with one end against a wall and the other end on horizontal ground which is level with the base of the wall and x metres from the bottom of the wall. The end which is in contact with the ground is sliding away from the wall at a constant rate of $0.1 \mathrm{~m} / \mathrm{s}$.

Find the rate (in radians/s) at which the angle, θ, between the ladder and the ground $\mathbf{3}$ is decreasing when the end of the ladder is 3 metres from the wall.

End of Question 1

Question 2 (13 Marks) Start on the appropriate page of your answer booklet.

a) The acceleration of a particle undergoing Simple Harmonic Motion is given by $\ddot{x}=-n^{2} x$, where x is the displacement of the particle from the origin in metres, and n is a positive constant. The particle starts from rest at a distance of 10 metres to the right of its centre of oscillation O. The period of the motion is 2 seconds.
(i) Prove that $v^{2}=\pi^{2}\left(100-x^{2}\right)$, where v is the velocity of the particle in metres per second.
(ii) Find the speed of the particle in metres per second when it is 6 metres from the origin.
(iii) Find the time taken by the particle to first reach the point 6 metres to the right of O, correct to 2 decimal places. (You may assume $x=a \cos n t$ where a is a constant is a solution of $\ddot{x}=-n^{2} x$.
b) The rate of growth of a population N over t years is given by: $\frac{d N}{d t}=-k(N-700)$.
(i) Show that $N=700+A e^{-k t}$ satisfies $\frac{d N}{d t}=-k(N-700)$ where A and $k \quad 1$ are constants.
(ii) The population decreased from an initial population of 8300 to 5100 in 5 years.
Find the population at the end of the next 5 years. Give your answer correct to the nearest hundred.
c) Consider the binomial expansion $1+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+\binom{n}{n} x^{n}=(1+x)^{n}$.
(i) Show that $1+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}$.
(ii) Show that

$$
\left[1+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}\right]\left[1+\frac{1}{2}\binom{n}{1}+\frac{1}{4}\binom{n}{2}+\ldots+\frac{1}{2^{n}}\binom{n}{n}\right]=3^{n} .
$$

End of Question 2

Question 3 (9 Marks) Start on the appropriate page of your answer booklet.

a) The coefficients of x^{4} and x^{5} in the expansion of $(2+5 x)^{n}$ are in the ratio of 1:3 2 Find the value of n.
b) A certain particle moves along the x axis according to the equation $t=2 x^{2}-5 x+3$, where x is its displacement measured in centimetres at time t seconds.
Initially the particle is 1.5 cm to the right of the origin, O, and moving away from O.
(i) Prove that the velocity, $v \mathrm{~cm} \mathrm{~s}^{-1}$, is given by $v=\frac{1}{4 x-5}$.
(ii) Find the velocity of the particle when $t=6$ seconds.
(iii) Find an expression for the acceleration, $a \mathrm{~cm} \mathrm{~s}^{-2}$, in terms of x.

End of Question 3

Question $4 \quad$ (10 Marks) Start on the appropriate page of your answer booklet.

a) A missile is fired from ground level into the air at a velocity of $40 \mathrm{~m} / \mathrm{s}$ and at an angle of α with the horizontal.

A short time later another missile is fired from the same point and with the same speed but at a different angle β. Both missiles hit the same target at the same time. The target is 55 m above the ground and 80 m horizontally from the point of firing. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and neglect air resistance).

Given the equations of motion at time t seconds are:
$x=40 t \cos \alpha$ and $y=-5 t^{2}+40 t \sin \alpha$ (DO NOT PROVE)
(i) Show that the path of the first missile is given by $y=x \tan \alpha-x^{2}\left(\frac{\sec ^{2} \alpha}{320}\right)$.
(ii) Find the values of $\tan \alpha$ and $\tan \beta$.
(iii) Determine the time difference between the firing times of the two missiles.
b) Consider the expansion $(1-x)^{n}=\binom{n}{0}-\binom{n}{1} x+\binom{n}{2} x^{2}-\ldots+(-1)^{n}\binom{n}{n} x^{n}$.
(i) Show that $\int_{0}^{1}(1-x)^{n} d x=\binom{n}{0}-\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}-\ldots+\frac{(-1)^{n}}{n+1}\binom{n}{n}$.
(ii) Hence find the value of $\sum_{r=0}^{2018}(-1)^{r} \frac{1}{r+1}\binom{2018}{r}$.

HSC Extensiow / TASK 3 June 2018

Q1
a) Generd ferm: $\left.{ }^{12} C_{k}(3 k)^{2}\right)^{12-k}\left(2 h^{-1}\right)^{-k}$

$$
\begin{aligned}
& ={ }^{12} C_{k} 3^{k-k} 2^{k} x^{24-2 k-k} \\
& ={ }^{12} C_{k} 3^{12-k} 2^{k} \lambda^{24-3 k}
\end{aligned}
$$

(2) conred answer
(1) frods genead term $\sim s$ unsimplitied is acceptable

For contand term $24-3 k=0$

$$
k=8
$$

\therefore Conthant term is ${ }^{2} C_{8} 3^{4} 2^{8}(=10264320)$
b(i) Amplitude $=4$
(1) corred answer
(ii) Penod $=\frac{2 \pi}{\pi}$
(1) Corred answer
(iii) $\dot{x}=4 \pi \cos (\pi t)$
(1) cured answer
\therefore Greatest speed $=4 \pi \mathrm{~cm} / \mathrm{s}$.
(N) $\ddot{x}=-4 \pi^{2} \sin (\pi t)$
(1) correct slaturion
$\ddot{x}=-\pi^{2} n$ wheh is of the form $\ddot{x}=-n^{2} n$.
\therefore objeit is moving in 5 Nm .
c) $\quad \cos \theta=\frac{k}{5}$
(3) corred sidintion
$\theta=\cos ^{-1} \frac{\lambda}{r}$
(2) $\operatorname{fin}^{\text {rithench}} \frac{d i t}{d x}$ or $\frac{d x}{d t}$

$$
\begin{aligned}
& \frac{d \theta}{d t}=\frac{d \theta}{d x} \cdot \frac{d x}{d t} \\
& \frac{d \theta}{d t}=\frac{-1}{\sqrt{25-x^{2}}} \times 0.1
\end{aligned}
$$

When $n=3 \frac{d \theta}{d t}=\frac{-1}{\sqrt{16}} \times \frac{1}{10}$

$$
=-\frac{1}{40} \text { radkins/sec. }
$$

2
a) (i)

Perod $=\frac{2 \pi}{n}$

$$
2=\frac{2 \pi}{n}
$$

$$
n=\pi
$$

$$
\ddot{x}=-\pi^{2} x
$$

$$
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-\pi^{2} x
$$

$$
\left[\frac{1}{2} v^{2}\right]_{0}^{v}=-\pi^{2}\left[\frac{\lambda}{2}\right]_{0}^{x}
$$

$$
\frac{1}{2}\left(v^{2}-0\right)=-\pi^{2}\left(\frac{n^{2}}{2}-\frac{10}{2}\right)
$$

$$
\frac{v^{2}}{2}=\pi^{2}\left(\frac{120-k}{2}\right)^{2}
$$

$$
v^{2}=\pi^{2}\left(100-x^{2}\right)
$$

(ii)

$$
\text { When } \begin{aligned}
n=4, & v^{2} \\
v^{2} & =64 \pi^{2}(100-36) \\
v^{2} & = \pm \pi \sqrt{64} \\
\therefore S_{p e e d} & =8 \pi \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(3) wreed solution:
(2) fids $\frac{1}{2} v^{2}$ i tems of x
(inchderg instant)
(1) finds he value of n

OR (1) attempts to indegnute $\sigma_{m}\left(\frac{1}{2} v v^{2}\right)=-n^{2} x$

$$
\text { 2(b)(i) } \begin{aligned}
N & =200+1 A e^{-L t} \\
\frac{d N}{d t} & =-k\left(7 k e^{-k t}\right. \\
& =-k(N-200)-200)
\end{aligned}
$$

ii) When 100, $N=8300$
(1) corred solution

I

$$
\begin{aligned}
8300 & =700+A e^{\circ} \\
A & =7600 \\
\therefore N & =700+7600 e^{-1 t} \\
w h e n t=5 & =5100 \\
5100 & =700+7600 e^{-5 k} \\
4400 & =7600 e^{-5 L} \\
\frac{11}{19} & =e^{-5 L} \\
-5 k & =\ln \frac{11}{4} \\
5 k & =\ln \frac{14}{14} \\
h & =\frac{\ln \frac{4}{11}}{5} \\
(& =0.1093 .
\end{aligned}
$$

When $f=N=700+7600 e^{-10 \times \frac{\ln 19}{5}}$

$$
=3247.368
$$

\therefore Population is appuximaty 3200
2c) i) $\mathrm{Le} x=1$
(1) co reet soldwin

$$
\begin{aligned}
& 1+(\hat{1})+(\hat{2}) \cdot 1+\ldots(\hat{n}))^{1}=(1+1)^{n} \\
& 1+(\hat{1})+(\hat{2})+\ldots+(\hat{n})=2^{n}
\end{aligned}
$$

(3) Corred aniver
(2) finds A and K
(i) finds careet value of A and atienplsto fid k

3 (a) Genenel term: ${ }^{n} C_{k} 2^{n k}(5 L)^{k}$
(2) corred anwer

$$
\begin{aligned}
& \therefore \ln ^{-4} \leq L^{n} 2^{n-k} 5^{k} \\
& \therefore \frac{{ }_{n} C_{4} L^{n-4} 5^{4}}{\hat{C}_{5} L^{n-5} 5^{5}}=\frac{1}{3} \\
& \frac{2}{5} \frac{\frac{n!}{(n-4!)^{4!}}}{\frac{n!}{(n-5!) 5!}}=\frac{1}{3} \\
& \frac{(x-5)!}{(n-4(n-5)!}=\frac{5}{6} \\
& n-4=6 \\
& n=10
\end{aligned}
$$

(1) equates wato of Leffrowide io 系.

4 a) (i) From $x=40 \operatorname{tcos} \alpha$
() cored suluturi
$t=\frac{\lambda}{40 \cos \alpha}$
subs in $y=-5 t^{2}+40 t \sin \alpha$

$$
\begin{aligned}
& y=-5 \frac{x^{2}}{16000^{2} \alpha}+46 \frac{x}{40 \sin \alpha} \alpha \\
& y=x \tan \alpha-\frac{x^{2}}{320} \sec ^{2} \alpha
\end{aligned}
$$

(ii) When $x=80 \quad y=55$

$$
\begin{gathered}
55=80 \tan \alpha-64 \frac{00 \sec ^{2} \alpha}{320} \\
55=80 \tan \alpha-20\left(\tan ^{2} \alpha+1\right) \\
20 \tan ^{2} \alpha-80 \tan \alpha+75=0 \\
4 \tan ^{2} \alpha-16 \tan \alpha+15=0 \\
(2 \tan \alpha-3)(2 \tan \alpha-5)=0 \\
\tan \alpha^{2}=3, \tan \alpha=\frac{5}{2} \\
\therefore \tan \alpha=\frac{5}{2} \quad \& \quad \tan \beta=\frac{3}{2}
\end{gathered}
$$

iii)

$$
\begin{aligned}
x & =40 t \omega 1 \alpha \\
80 & =401 \frac{2}{\sqrt{29}} \\
1 & =\sqrt{29}
\end{aligned}
$$

$$
x=40 t \cos \beta
$$

$$
80=401 \frac{2}{\sqrt{3}}
$$

$$
t=\sqrt{13}
$$

$$
\begin{aligned}
\therefore \text { Difference in time } & =\sqrt{29}-\sqrt{13} \\
& =1.7796 \ldots \text { secs }
\end{aligned}
$$

(2) correct solution (must specify ton $\alpha=\frac{5}{2}$ $\operatorname{and} \tan \beta=3 / 2 \quad a(\alpha>\beta)$
(1) quadratic in $\tan \alpha$

4
iii) when $x=80, y=55$

$$
\begin{gathered}
55=80 \tan \alpha-6400+\frac{\sec \alpha}{320} \\
55=80 \tan \alpha-20\left(\tan ^{2} \alpha+1 i\right) \\
20 \tan ^{2} \alpha-80 \tan \alpha+75=0 \\
4 \tan ^{2} \alpha-16 \tan \alpha+15=0 \\
(2 \tan \alpha-3)(2 \tan \alpha-5)=0 \\
\tan \alpha=3 / \tan \alpha=5 / 2 \\
\therefore \tan \alpha=3 / 2 \& \tan \beta=5
\end{gathered}
$$

(2) cooect sulution
(1) Sclves quadratic in tan - α.
iv)

$$
\begin{array}{rlr}
x=404 \cos \alpha & & x=40 t \cos \beta \\
80=401 \frac{2}{\sqrt{13}} & 80=40 t=\frac{2}{\sqrt{19}} \\
\text { f2 } 13 \\
\therefore \text { difterere } & & A \sqrt{24}-\sqrt{13} \\
& =1.7796 \text {. Sces }
\end{array}
$$

(2) corret aniwer
(1) calculates α
(1) calculates time for 1 missit.

$$
\begin{aligned}
& \text { 4-6) i) } \int_{0}^{1}(1-x)^{n} d x=\int_{0}^{1}\left((\hat{a})-\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+(-1)^{n}\binom{n}{n} x^{n}\right) d x \\
& \left.=\left[\begin{array}{l}
n \\
0
\end{array}\right) x-\binom{n}{1} \frac{x^{2}}{2}+(\hat{n}) \frac{\lambda^{3}}{3}+\ldots+(-1)^{n}\left(\frac{\hat{n}}{\hat{n}}\right) \frac{n^{n+i}}{n+1}\right]_{0}^{1} \\
& =\left(\binom{n}{0}-\binom{n}{1} \frac{1}{2}+\binom{n}{2} \frac{1}{3}+\ldots+(-1)^{n}(n) \frac{1}{n+1}\right)-(0-0+0+\ldots 0) \\
& =\binom{n}{0}-\frac{1}{2}\binom{n}{1}+\frac{1}{\xi^{n}}(\hat{2})+\ldots+\frac{(-1)^{n}}{n+1} \\
& \text { (2) Gorred solution } \\
& \text { (1) Integrates RAS } \\
& \text { b(ii) } \int_{0}^{1}(1-x)^{20.9} d x=\left[\frac{-(1-x)^{2019}}{20,9}\right]_{0}^{1} \\
& =0+\frac{10019}{2019} \\
& \text { (2) corred solution } \\
& \text { (1) } \cdot \operatorname{deg} x \operatorname{ts} \int_{0}(1-x)^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \sum_{r=0}^{2018}(-1)^{r} \frac{1}{r+1}\binom{2018}{r}=\frac{1}{20 i 9}
\end{aligned}
$$

