QUESTION 1 (9 Marks)

- (a) In a set of 7 letters, some of the letters are T 's and all other letters are different. If the number of different arrangements of these letters is 210, how many letters are T 's.
- (b) In a colony of bacteria, the rate of change of the colony is given by: $\frac{dP}{dP} = kP - r$

$$\frac{dI}{dt} = kP - r,$$

where P is the number of bacteria at time t minutes, r is the constant rate per minute at which the bacteria die and k is a constant.

- (i) Verify that $P = \frac{r}{k} \frac{A}{k}e^{kt}$ is the solution to the rate equation 2 $\frac{dP}{dt} = kP - r$, given A is a constant.
- (ii) Find the time when the population of the bacteria colony is reduced to zero, given that when t = 0, P = 5000, k = 0.2and r = 1500. Give your answer to the nearest second.
- (iii) Find P when t = 2, (answer to the nearest bacteria). 2

QUESTION 2 (9 Marks) START A NEW PAGE

- (a) The velocity $v \text{ cms}^{-1}$ of a particle is given by v = 2x + 5. If the initial displacement is 1cm to the right of the origin, find the displacement as a function of time. **3**
- (b) (i) A Brine solution contains 1kg of salt per 10 litres. It runs into a tank, initially filled with 500 litres of fresh water, at a rate of 25 litres per minute. At the same time, the mixture runs out of the tank at the same rate. If A kg is the amount of salt in the tank at time t minutes,

Explain why:
$$\frac{dA}{dt} = 2.5 - \frac{A}{20}$$
.

- (ii) Find the amount of salt in the tank at the end of 60 minutes, assuming the mixture is kept homogenous (to the nearest 10 grams).
- (iii) Find the maximum concentration of salt in the mixture.

Marks 2

2

3

1

Marks

QUESTION 3 (9 Marks) START A NEW PAGE

			Marks
(a)	Sixteen of random in What is th separate p	the chickens on the James Ruse School Farm are separated at to 4 pens of 4 chickens for a feed trial. e probability that 4 particular chickens, <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are in 4 ens?	3
(b)	The velocity $v = e^t - e^{-t}$ The initial	ity of a body, $v \text{ ms}^{-1}$, moving in a straight line is given as f^{-t} , where <i>t</i> is the time in seconds. position of the body is at the origin.	
	(i)	Find the displacement x as a function of time t .	2
	(ii)	Find the acceleration when $t = 2$. Give your answer correct to 2 decimal places.	2
	(iii)	Show that the body does not have a zero acceleration.	2

QUESTION 4 (9 Marks) START A NEW PAGE

		Marks
The depth	n of water in y metres on a tidal creek is given by:	
	$4\frac{d^2y}{dt^2} = 5 - y$, where time <i>t</i> is measured in hours.	
(i)	Prove that the vertical motion of the water level is simple harmonic and hence find the centre of motion.	2
(ii)	Find the period of the motion.	1
(iii)	Given that $y = 2$ at low tide and $y = 8$ at high tide, and that $y = a + b \cos nt$ is the solution of the equation: $4\ddot{y} = 5 - y$, write down the values of <i>a</i> , <i>b</i> and <i>n</i> .	3
(iv)	If the low tide is at 10 am, what is the earliest time after low tide that a fishing boat requiring a depth of 4 metres of water can enter the creek?	3

QUESTION 5 (9 Marks) START A NEW PAGE

(a)	Calculate	the number of arrangements of the letters DESCARTES :	Marks
	(i)	If the two <i>S</i> 's are adjacent.	1
	(ii)	If no two vowels are together.	2
	(iii)	If the conditions from part (i) and (ii) hold simultaneously.	2

(b) The graph below illustrates the velocity of a particle as a function of time.

- (i) Sketch the graph of the particle to illustrate the acceleration 2 as a function of time, given that the particle is initially 1 m to the left of the origin O.
- (ii) Hence write a description of the motion. 2

Marks The velocity $v \text{ ms}^{-1}$ of a particle moving along the *x*-axis is given by: (a) $v = \sqrt{2 + 2\cos 2x}$. Initially the particle is located at the origin. 3 (i) Find the initial velocity and acceleration. Assuming that the particle reaches the position of $\frac{\pi}{2}$ metres (ii) 2 from the origin, determine what would happen to the particle after this time. (b) In a certain experiment recording the number of bees N pollinating flowers in a given area, it was found that the rate of change of N is $\frac{dN}{dt} = kN\left(1 - \frac{N}{2000}\right),$ given by: where t is the time in days and k is a constant. At the beginning of the experiment 1000 bees were introduced to the area. Verify that $N = \frac{2000}{1 + e^{-kt}}$ is the solution of the equation. (i) 2 If N = 1500 when t = 10, determine the time in days, when (ii) 2 N = 1800.**QUESTION 7 (9 Marks) START A NEW PAGE**

A shell is detonated on level ground throwing fragments with a (a) speed $V \,\mathrm{ms}^{-1}$ in all directions. After a time T, a fragment hits the ground at a distance M from the

shell.

You may assume these parametric equations of motion:

$$x = Vt \cos \alpha \text{ and } y = Vt \sin \alpha - \frac{1}{2}gt^{2}$$

Show that: $g^{2}T^{4} - 4V^{2}T^{2} + 4M^{2} = 0$.

Marks

3

(ii) Hence find, to 2 decimal places, the shortest period of time during which a man, standing 20 metres from the place where the shell bursts, is in danger when V = 25. Take g = 10.

(b) Twelve politicians are seated at a round table. A committee of five is to 4 be chosen. If each politician, for one reason or another, dislikes their immediate neighbours and refuses to serve on a committee with them, in how many ways can a compatible group of five politicians be chosen?

END OF EXAMINATION

(i)

	All and the second s	mark	comment
(a)	Let number of $t's = t$	Sec. 1	
	7! 210		Carling and the
	$\frac{1}{1!} = 210$		1 for correct equation
	. 7!	2	1.0.1.1
	$t! = \frac{1}{210}$		1 for solution
	t! = 4!		
	t = 4		
	there are 4 t's		
			Laurant
(i)	- 1	mark	comment
0)(1)	$P = \frac{r}{k} - \frac{r}{k}e^{kt}$		
	dP		1 for differentiation
	$\frac{dt}{dt} = -Ae^{tt}$	2	
	but $kP = r - Ae^{kt}$		1 for substitution
	$-Ae^{kt} = kP - r$		
	dP		
	$\therefore \frac{d}{dt} = kP - r$	1.000	
1/11			
)(11)	$P = \frac{r}{t} - \frac{A}{t} e^{kt}$		a second second second
	K K 0 R 5000 K 0.2 - 1500	1.1	
	when $T = 0, P = 5000, K = 0.2, P = 1500$		
	$5000 = \frac{1500}{200} - \frac{A}{200}e^{0}$	1	1 for value of A
	0.2 0.2		
	A = 500	12.00	L for In 3
	$P = 7500 - 2500e^{0.27}$	3	$1 \text{ for } \overline{0.2}$
	when $P = 0$		
	$0 = 7500 - 2500e^{0.2t}$		1 for approx. time
	$e^{0.2t} = 3$		
	$0.2t = \ln 3$		
	In 3	11.11 10	
	$t = \frac{1}{0.2}$		the second second second
	<i>t</i> = 5.493		
	time = 5 min 30 sec		
(iii)	- r An		
	$P = \frac{1}{k} - \frac{1}{k}e^{it}$		
	when $t = 2$		1 for substitution
	$P = 7500 - 2500e^{0.2 \times 2}$	2	
			1 for evaluation of population
	P = 3770.438		i for eranament er population

EXT | TERM 2 2008, MATHEMATICS: Question 2

Suggested Solutions	Marks	Marker's Comments
$(a) \forall = \frac{dx}{dt} = 2x + 5$		
$\frac{dL}{d_{RL}} = \frac{1}{2n+5}$		
$\pm = \frac{1}{2} \ln (2x+3) + c$	1	
When E=0, X=1 : 0= 1/2 lm 7 + C : C= - 1/2 lm 7	1	
$\therefore t = \frac{1}{2} lm \left(\frac{2\pi + 5}{7}\right)$		Several people left find
$e^{2t} = \frac{2x+5}{7} \implies x = \frac{7e^{2t}-5}{2}$	1	$x = \frac{e^{2t+\ln 7} - 5}{2}$ (Half mark doched)
b)i) dA = Rate In - Rate Out (A is amount of) salt in kgp) salt in		
Rate ha = $1 \times \frac{25}{10} = 2.5$ kg/min		No second merh was
Rate Out = $25 \times \frac{A}{500} = \frac{A}{20} \text{ kg/mm}$.	1	from northere "
$\frac{dA}{dt} = 2.5 - \frac{A}{20}$	1	
ii) Solution of this equation is $\frac{A = B + Ce^{-t/20}}{A = B + Ce^{-t/20}} \text{where } B, C \text{ constants}$	1	
$A = B(1 - e^{-t/10})$		
But $dA = Be^{-t/20} = 2.5 - B + Be^{-t/10}$ dt = 20		If gons used and rounded wrong, last
$A = 50 (1 - e^{-t/20})$	1	mark NOT given. It just a 3rd digit
When t=60, A= 50(1-e^-3) = 47.51 kg	1	'h may deducted.
iii) $a_0 t \rightarrow \infty$, $A \rightarrow 50 as e^{-t/20} \rightarrow 0$.		If storped at A=50,
Max concentration, never strictly		then he given.
attained is 50 kg/l = 0.1 kg/l.	1	Many people, incorrectly, used dA = 0 and amive

J:\Maths\Suggested Mk solns template_V2.doc

at correct answer.

1.1	Suggested Solutions	Marks	Marker's Comments
Cheose gri	C, D In 4 pens (1 was ining 12	3	0 369600
- 12 No. of way 4 from (- 16 - 16 - 16 	$\frac{q_{e_x} \times e_c}{2} = 3L966$ $\frac{q_{e_x} \times e_x}{2} = 3L966$ $\frac{12}{12} \times \frac{12}{24} \times \frac{12}{24} \times \frac{12}{24} \times \frac{12}{24} = 6306$ $\frac{12}{12} = 2627$ $\frac{12}{2627625} = 2627625$	3000 1 25 44 45	① 2627625 ⁻ ① 4 [!]
Allemativel	$\frac{4! \times 369600}{63063000} = 6$	4	
<u>Alternative</u>	$\frac{9 16}{16} \times \frac{12}{15} \times \frac{5}{14} \times \frac{4}{13} =$ $\frac{16}{16} \times \frac{12}{15} \times \frac{5}{14} \times \frac{12}{13} =$ $\frac{16}{15} \times \frac{12}{14} \times \frac{12}{13} =$ $\frac{16}{15} \times \frac{12}{14} \times \frac{12}{13} =$ $\frac{16}{13} \times \frac{12}{13} \times \frac{12}{13} \times \frac{12}{13} \times \frac{12}{13} =$ $\frac{16}{13} \times \frac{12}{13} \times \frac{12}$	<u>69</u> <u>+55</u>	
(1) v = z	$e^{t} - e^{-t}$	3	
X =	$\int e^{t} - e^{-t} dt$ $e^{t} + e^{-t} + c$		
x = 	$dir = e^{t} + e^{t} - 2$		$\bigcirc C = -2$
annea	$\begin{array}{c} at \\ t = 2 \\ = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 5 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \\ \hline & a = 7 \cdot 5 \cdot 2 \cdot 4 \cdot 39 \cdot 138 \cdot 2 \cdot 2 \cdot 38 \cdot 2 \cdot 38 \cdot 2 \cdot 38 \cdot 2 \cdot 2 \cdot 38 \cdot 2 \cdot 38 \cdot 2 \cdot 38 \cdot 38$		(1) a = e + e (1) a = e + e
(11) 6	$l = e^{t} + e^{-t}$		no deduction if no units
	et 70 for all t et 70 for all t	(2)	et>0 () et>0 ()
P	· a > 0 : meder zer	<u> </u>	et + 0 e + 0 () only

QUESTION 4: (9 Morks) (a) (1) 4 dzy = 5- y y = - + (y-5) which is of the form $y = -n^2(x-b)$, hence the motion IS SHM. Centre of motion occurs when if=0 is. at y=5 (1)(ii) $n^2 = \frac{1}{4}$. n = ± (taking the positive value) Period = 21 = 41 hours or 12 hrs 34 min. () (iii) y = a + b Cos nt a is the centre of motion i.e. a=5 () b is the amplitude $\frac{8-2}{2} = 3$ n=2 from (ii) () -: b = - 3 regative sign measures time from low tide () .- y = 5 - 3005tt ... a=5, b=-3, n=2 (IV) Low tide occurs at 10 am. Fishing boot reads 4m of water 1 = 4=4 : 4 = 5-3Costt 3 = Costt t = 2hrs 28 minutes ... Required time from low-lide is zhrs 28 minutes and the actual time is 12:28pm. ()

2008 - Term 2 - Solution - Extl

(1)

MATHEMATICS: Question 6 Extension 1 Suggested Solutions Marks Marker's Comments Method 3 ' $\frac{1}{1+e^{-k+1}} = \frac{1}{1+e^{-k+1}}$ $N = \frac{2000}{110^{-14}}$ 2000 - N = RN N 1 + 2000-N $\frac{2000}{N} = 1 + e^{-kt}$ $\frac{2000}{N} - 1 = e^{-kt}$ $\frac{2000 - N}{N} = e^{-kt}$ N 2000-N = RN N+2000-N N 2000 - N = RN 2000 I - N= RN 2000 = RHS as required b(11) N=1500, t=10 => 1500 = 2000 1+ e-1012 Find R. $\frac{1 + e^{-10k}}{e^{-10k}} = \frac{4}{4}$ -10k = ln 13 k = -1 en 1/2 OR k= Inln 3 When N= 1800, find t : 1400 = 2000 1+e-kt = 10 (where R= I and) $e^{-t+} = \frac{1}{2}$ $t = -1 \ln \frac{1}{2}$ $t = \frac{1}{R} \ln 3^2$ = 2 lu 3 = 2710 years t = 20 hours 12 if left in 12 wrong units. t = 5 days 1 ** (a) (ii) at $x = \frac{\pi}{2}$, $V = \sqrt{2 + 2 \cos \pi} = 0$ $\alpha = -2 \sin \pi = 0$ 1/2 41 When particle reaches x= then, the particle will come to rest cance remain there, I as there is no force acting on the particle Need to say why the particle remains at 12] rest. otterwise

J:\Maths\Suggested Mk solns template V3 all Ls.doc

J:\Maths\Suggested Mk solns template_V3_all Ls.doc

-1 penalty.

2

(c) (i) Initial speed V ms⁻¹ at an angle of s^o

$$x = vt \cos x$$

 $t = T, x = m, y = 0$
 $m = vt \cos x$
 $Gosd = \frac{m}{vT}$
 $Sinc = \sqrt{vT + m^{-1}}$ () $\sqrt{vT + m^{-1}} = \frac{m^{-1}}{xT}$
 $\sqrt{T} + \frac{m^{-1}}{vT} = \frac{m^{-1}}{x}$
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $T^{-1} = \frac{25t\sqrt{55^{1}}}{x}$
 $T = \frac{1}{x} + 93t$, 0.811 ()
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{25t\sqrt{55^{1}}}{x}$
 $T = \frac{1}{x} + 93t$, 0.811 ()
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $T = \frac{1}{x} + 93t$, 0.811 ()
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $T = \frac{1}{x} + 93t$, 0.811 ()
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $T = \frac{1}{x} + 93t$, 0.811 ()
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $T = \frac{1}{x} + 93t$, 0.811 ()
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $T = \frac{1}{x} + 93t$, 0.811 ()
 $\sqrt{T} + \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x} = \frac{m^{-1}}{x}$
 $T = \frac{m^{-1}}{x} = \frac{m^{-1}$

.7(b) (Method.2) 2000 these & available 13587 (358 1359 Ways to pick first price : 12. (368 briags to choose these & relating 1369 1379 15 mays. 1468 1469 1. tobel = 1.5 × 12 1479 = 180 1 45 29 But 1st perso wiercharpecble 2468 " with other 4 Callich are sixed 2469 So need to develo by 2479 51. 2579 3579 : Anewer = (80 = 36.