QUESTION 1 (9 Marks)

(a) In a set of 7 letters, some of the letters are T 's and all other letters are

Marks
2 different. If the number of different arrangements of these letters is 210 , how many letters are T 's.
(b) In a colony of bacteria, the rate of change of the colony is given by:

$$
\frac{d P}{d t}=k P-r
$$

where P is the number of bacteria at time t minutes, r is the constant rate per minute at which the bacteria die and k is a constant.
(i) Verify that $P=\frac{r}{k}-\frac{A}{k} e^{k t}$ is the solution to the rate equation $\frac{d P}{d t}=k P-r$, given A is a constant.
(ii) Find the time when the population of the bacteria colony is reduced to zero, given that when $t=0, P=5000, k=0 \cdot 2$ and $r=1500$. Give your answer to the nearest second.
(iii) Find P when $t=2$, (answer to the nearest bacteria).

QUESTION 2 (9 Marks) START A NEW PAGE

(a) The velocity $v \mathrm{cms}^{-1}$ of a particle is given by $v=2 x+5$. If the initial displacement is 1 cm to the right of the origin, find the displacement as a function of time.
(b) (i) A Brine solution contains 1 kg of salt per 10 litres. It runs into a tank, initially filled with 500 litres of fresh water, at a rate of 25 litres per minute. At the same time, the mixture runs out of the tank at the same rate.
If $A \mathrm{~kg}$ is the amount of salt in the tank at time t minutes, Explain why: $\frac{d A}{d t}=2.5-\frac{A}{20}$.
(ii) Find the amount of salt in the tank at the end of 60 minutes, assuming the mixture is kept homogenous (to the nearest 10 grams).
(iii) Find the maximum concentration of salt in the mixture.

QUESTION 3 (9 Marks)

Marks

 random into 4 pens of 4 chickens for a feed trial.What is the probability that 4 particular chickens, A, B, C and D are in 4 separate pens?
(b) The velocity of a body, $v \mathrm{~ms}^{-1}$, moving in a straight line is given as $v=e^{t}-e^{-t}$, where t is the time in seconds. The initial position of the body is at the origin.
(i) Find the displacement x as a function of time t.
(ii) Find the acceleration when $t=2$.

Give your answer correct to 2 decimal places.
(iii) Show that the body does not have a zero acceleration.

QUESTION 4 (9 Marks) START A NEW PAGE

The depth of water in y metres on a tidal creek is given by: $4 \frac{d^{2} y}{d t^{2}}=5-y$, where time t is measured in hours.
(i) Prove that the vertical motion of the water level is simple harmonic and hence find the centre of motion.
(ii) Find the period of the motion.
(iii) Given that $y=2$ at low tide and $y=8$ at high tide, and that $y=a+b \cos n t$ is the solution of the equation: $4 \ddot{y}=5-y$, write down the values of a, b and n.
(iv) If the low tide is at 10 am , what is the earliest time after low tide that a fishing boat requiring a depth of 4 metres of water can enter the creek?

QUESTION 5 (9 Marks)

Marks

(a) Calculate the number of arrangements of the letters DESCARTES:
(i) If the two \boldsymbol{S} 's are adjacent. $\mathbf{1}$
(ii) If no two vowels are together. 2
(iii) If the conditions from part (i) and (ii) hold simultaneously.
(b) The graph below illustrates the velocity of a particle as a function of time.

(i) Sketch the graph of the particle to illustrate the acceleration as a function of time, given that the particle is initially 1 m to the left of the origin O.
(ii) Hence write a description of the motion.

QUESTION 6 (9 Marks)

START A NEW PAGE

Marks

(a) The velocity $v \mathrm{~ms}^{-1}$ of a particle moving along the x-axis is given by: $v=\sqrt{2+2 \cos 2 x}$. Initially the particle is located at the origin.
(i) Find the initial velocity and acceleration.

3
(ii) Assuming that the particle reaches the position of $\frac{\pi}{2}$ metres from the origin, determine what would happen to the particle after this time.
(b) In a certain experiment recording the number of bees N pollinating flowers in a given area, it was found that the rate of change of N is
given by: $\quad \frac{d N}{d t}=k N\left(1-\frac{N}{2000}\right)$,
where t is the time in days and k is a constant.
At the beginning of the experiment 1000 bees were introduced to the area.
(i) Verify that $N=\frac{2000}{1+e^{-k t}}$ is the solution of the equation.
(ii) If $N=1500$ when $t=10$, determine the time in days, when

QUESTION 7 (9 Marks) START A NEW PAGE

(a) A shell is detonated on level ground throwing fragments with a speed $V \mathrm{~ms}^{-1}$ in all directions.
After a time T, a fragment hits the ground at a distance M from the shell.
You may assume these parametric equations of motion:

$$
x=V t \cos \alpha \text { and } y=V t \sin \alpha-\frac{1}{2} g t^{2}
$$

(i) Show that: $g^{2} T^{4}-4 V^{2} T^{2}+4 M^{2}=0$.
(ii) Hence find, to 2 decimal places, the shortest period of time during which a man, standing 20 metres from the place where the shell bursts, is in danger when $V=25$. Take $g=10$.
(b) Twelve politicians are seated at a round table. A committee of five is to be chosen. If each politician, for one reason or another, dislikes their immediate neighbours and refuses to serve on a committee with them, in how many ways can a compatible group of five politicians be chosen?

$J:$ Maths Suggested Mk solns template_ V2.doc

E:URAH M Fac AdminlAssessment infolSuggested Mk solns template_V4.doc

Question 4: (9 Marts)

(1) $4 \frac{d^{2} y}{d t^{2}}=5-y$

$$
y=-\frac{1}{4}(y-5)
$$

(1)

Which is of the form $y=-n^{2}(x-b)$, hence the motion shm.
Clentre of motion occurs wher $y=0$ ie. at $y=5$ (1)
\#nim) $n^{2}=\frac{1}{4}$
$1 \therefore n=\frac{1}{2}$ (taking the positive value)
Period $=\frac{2 \pi}{n}=4 \pi$ hours or 12 hhrs 34 min . (1)
(iii) $y=a+b \cos n t \quad a$ is the centre of motion ise $a=5$ (1) b is the amplitude $\frac{8-2}{2}=3$
$n=\frac{1}{2}$ from (ii)
$b=-3 \frac{\text { regative sign measures time }}{}$
$\therefore y=5-3 \cos \frac{1}{2} t$ from low tide (1)
$a=5, b=-3, n=\frac{1}{2}$
(iv) Low tide occurs at 10 am

Fishing boat reods 4 m of water is $y=4$
$\therefore 4=5-3 \cos \frac{1}{2} t$
$\frac{1}{3}=\cos \frac{1}{2} t$
$t=2 h r s 2.8$ minutes
\therefore Required time from lowtide is 2 hrs 28 minutes and the actual time is $12: 28 \mathrm{pm}$. (1)
$y=12 E x+1 T 2(2008)<5$
(a) (i) $2 \because$ as lusit

8 units with 2 ' e ' can be arrarged in $\frac{8!}{2!}=20160$ \#
complimestan
Method
in (ii) 6 consonarts witt 2 's' can be arrangod is $\frac{6 \text { ! }}{2!}$ way. 3 voweb A, E, E can occupy ' C_{3} positions Vowels can be ordered in $\frac{3!}{2!}=3$ way
No. of a raupements $=\frac{6!}{2!} \times{ }^{7} C_{3} \times 3=37800 \mathrm{\#}$ Alterratuidy $\uparrow-\uparrow-\uparrow-\uparrow-\uparrow-\uparrow-\uparrow 6$ comsorarts 7 gape ${ }_{2}{ }_{2} \mathrm{Na}$ uoud has take $\frac{7}{6}$ puition $2^{\text {rad }}$
$3^{\text {rd }}$
N. of amayement $=\frac{6!}{2!} \times \frac{7 \times 6 \times 5}{2!\times 2!}=37800$ \#
$2 m$
(iii) DCRT(SS) can be ordered is 5! ways bach can be adered in 3 ways Ne of a raypemets $=5!\times{ }^{6} \mathrm{C}_{3} \times 3=7200$ Alternating $5!\times \frac{6 \times 5 \cdot 4}{2_{2} 5_{2}^{\prime} e^{\prime}}=7200$
$b i)$
$2 m$

(ii) Inilially rocatad 1 m left 8 rigin mariy + the $\left.\operatorname{right}_{\frac{1}{2} n}^{(r m 3}\right)$ slowing down $(v>0 \quad a<0) \quad \frac{1}{2} m$ mis velocity at $t=\frac{2}{3} s \quad \frac{1}{2} m$ Accelortion (fuce) chays directia to bo poritive Accelontion (frue) chaye dinctia $(v>0 \quad a>0) \frac{1}{2} m$
speedin up to tight

$$
A n, 2 \text { of }
$$

$$
\frac{6!}{2!} x^{1} 3_{3} x^{2}
$$

$$
\begin{aligned}
& \text { get I'n } \\
& \text { cwith product }
\end{aligned}
$$

evaluatod)

$$
\frac{6!}{2!} \times 7 \times 6 \times 5
$$

$$
=716000 \mathrm{got} / \mathrm{m}
$$

$$
5!\cdot 6 \times 5 \times 4
$$

$$
=16400 \mathrm{gt} / \mathrm{m}
$$

mag stade ts extord

$$
\text { lose } \frac{1}{2}\left(t \geqslant 0 \cdot b_{y}\right)
$$

bii) many studects
did notexplain
no gapl lut $\frac{1}{2}$ fored intercert

$$
\text { straiflt ein } 1 \mathrm{~m}
$$

$$
\text { the straipht } \operatorname{lin} \text { to }
$$

$$
\text { loft of } \ddot{x} \text { axis }
$$

Why particle
move triplt $v=370$
slar doun ($1>0, a c o$)
rpendup ($b>0, a>v)$
shar $\ddot{x}>6 t-4 \quad \frac{1}{2}$

$$
\begin{aligned}
& \text { 5ii) 2"e" } \begin{array}{l}
\text { eea } \\
\text { eae } \\
\text { aee }
\end{array} \\
& \text { lélä eaceae } \\
& \begin{array}{l}
\text { eea } \\
\text { aee }
\end{array} \\
& \text { No of Restriction - }-(2 e+i e ́ i a \dot{a})+(e e a+\text { +ee +eae }) \\
& \frac{9!}{2!2!}-\left[\begin{array}{cc}
\frac{8!}{2!}+\frac{8!}{2!} \times 2 \\
! \\
2! & 4, e \\
\text { can swap }
\end{array}\right. \\
& =90720-[20160+40320]+7560 \\
& =37800
\end{aligned}
$$

J:MathsiSuggested Mk soins template_ V3__all Ls.doc
(a) (i) Initial speed $V \mathrm{~ms}^{-1}$ at an angle of α°

$$
\begin{aligned}
& x=v+\cos \alpha \\
& t=T, x=m, y=0 \\
& m=v T \cos \alpha
\end{aligned}
$$

$\cos \alpha=\frac{n}{V T}$

$$
\sin \alpha=\frac{\sqrt{V^{2} T-m^{2}}}{V T}
$$

$$
\begin{aligned}
& 0=V T \cdot \frac{V V^{2} T-n^{2}}{V T}-\frac{g T}{2} \\
& \sqrt{V^{2} T^{2}-m^{2}}=\frac{g T^{2}}{2} \\
& V^{2} T^{2}-m^{2}=\frac{g T^{4}}{4} \\
& 2^{2}-4
\end{aligned}
$$

$$
9^{2} T^{4}-4 V^{2} T^{2}+4 M^{2}=0
$$

(ii) when $M=20 \mathrm{~m} \quad V=25 \mathrm{~ms}^{-1} \quad g=10 \mathrm{~ms}^{-2}$

$$
\begin{align*}
100 T^{4}-4 \times(25)^{2}+4 \times(20)^{2} & =0 \\
100 T^{4}-2500 T^{2}+1600 & =0 \\
T^{4}-25 T^{2}+16 & =0 \\
T^{2} & =\frac{25 \pm \sqrt{25^{2}-4 \times 1 \times 16}}{2} \\
T^{2} & =\frac{25 \pm \sqrt{561}}{2} \\
\therefore & =4.934,0.811
\end{align*}
$$

Shortest peris of time is 3.8 sec 3 . (reorestsec.)
(b) Case 1

If e prosticular politician. Mr x, is to le so the committee The 2 people sitting next to Mr x will not be on the committee
Therefore, there ore 4 to choose from 9 . (1)
Let e represerit politricions who will be on the committee and C^{\prime} those who will not be on the cocrmittee.

$$
\uparrow C^{\prime} \uparrow C^{\prime} \uparrow C^{\prime} \uparrow C^{\prime} \uparrow C^{\prime} \uparrow
$$

(1)

There are 6 places available for those on the comrrittel i.e. ${ }^{6} \mathrm{C}_{4}$ ways of choosing the committee with Mr x on it Case 2

If $\operatorname{Mr} x$ is not on the committee there ore ${ }^{7} \mathrm{C}_{5}$ ways of choosing
$\begin{aligned} \therefore \text { The total no. of ways } & ={ }^{7} C_{5}+{ }^{6} C_{4} \\ & =36\end{aligned}$

7 (b) (Metad-2)

1358 ?
1358
1359
1368
1369. Wags to chaser these 4 revering
1379

1468 / 5 mays.
11469
1479 $\quad \therefore$ total $=15 \times 12$
14529
2468
But list perse Miechergecble

2469

$$
\text { with other } 4 \text { Curich are fires }
$$

2479
2579
3579

$$
\frac{5!}{4!}
$$ So reed to drivels by

$$
\therefore \text { Amer }=\frac{180}{5!}=36 .
$$

