# JRAHS Ext1 Term2 2009

| QUE | STION                     | 1 (9 Marks)                                                                                                                                                                             | Marks |
|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (a) | The v<br>given<br>initial | relocity of a particle, v metres per second, moving in a straight line is<br>as $v = 8t^2 + 8t - 24$ , where t is the time in seconds. The particle is<br>lly 7 metres from the origin. |       |
|     | (i)                       | Find the displacement as a function of $t$ .                                                                                                                                            | 2     |
|     | (ii)                      | Find the acceleration as a function of $t$ .                                                                                                                                            | 2     |
|     | (iii)                     | What is the magnitude of the acceleration when $t = 2$ .                                                                                                                                | 1     |
|     | (iv)                      | When does the particle change direction?                                                                                                                                                | 1     |
| (b) | Twel                      | ve people are to be seated around a table.                                                                                                                                              |       |
|     | (i)                       | In how many ways can they be seated?                                                                                                                                                    | 1     |
|     | (ii)                      | In how many ways can they be seated if two particular people are not to be put together?                                                                                                | 1     |
|     | (iii)                     | Find the probability that 2 friends will be seated together.                                                                                                                            | 1     |

# QUESTION 2 (9 Marks) START A NEW PAGE

(a) A particle is moving in a straight line with its acceleration as a function of x given by  $\ddot{x} = -e^{-2x}$ . It is initially at the origin and is travelling with a velocity of 1 metre per second.

(i) Show that 
$$\dot{x} = \frac{1}{e^x}$$
. 2

2

- (ii) Hence derive an expression for the displacement of the particle as a function of t.
- (b) Consider a particle undergoing SHM, with its displacement, in metres, is given by

$$x = 2\cos(t + \frac{\pi}{4})$$
 at time t seconds.

| (i)   | Find the time at which the particle will first be at the origin.                            | 1 |
|-------|---------------------------------------------------------------------------------------------|---|
| (ii)  | Calculate the velocity of the particle when it passes through the origin for a second time. | 2 |
| (iii) | What is the magnitude of the greatest acceleration for this particle                        | 2 |

and when does it first occur?

#### **QUESTION 3 (9 Marks) START A NEW PAGE**

Marks

| (a) | The l                     | etters $A, E, I, O$ and $U$ are vowels.                                                                                                                                                                                 |   |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | (i)                       | How many arrangements of the letters in the word <i>MATHEMATICS</i> are possible?                                                                                                                                       | 1 |
|     | (ii)                      | How many arrangements of the letters in the word <i>MATHEMATICS</i> are possible if the vowels must occupy the $3^{rd}$ , $5^{th}$ , $7^{th}$ and $10^{th}$ positions?                                                  | 2 |
| (b) | In SH<br>displa<br>Show   | HM, the acceleration of a particle at any time is proportional to its accement from the origin and is directed towards the origin.<br>$x$ that a particle with displacement $x = a \tan nt$ is not moving in SMH.       | 3 |
| (c) | Carbo<br>It is u<br>years | on-14 is a radioactive isotope of carbon that has a half life of 5600 years.<br>used extensively in dating organic material that is tens of thousands of<br>old. What percentage of the original amount of Carbon-14 in |   |
|     | a san                     | nple would be present after 10,000 years? [Assume $N = N_0 e^{kt}$ ]                                                                                                                                                    | 3 |

#### **QUESTION 4 (9 Marks) START A NEW PAGE**

A freshly caught fish, initially at  $18^{\circ}$  C, is placed in a freezer that has a constant (a) unknown temperature of  $x^0$ C. The cooling rate of the fish is proportional to the difference between the temperature of the freezer & the temperature  $T^0C$ , of the fish.

 $\frac{dT}{dt} = -k(T-x),$ It is known that T satisfies the equation

where *t* is the number of minutes after the fish is placed in the freezer.

| (i) | Show that | $T = x + A e^{-kt}$ | satisfies this equation. | 2 |
|-----|-----------|---------------------|--------------------------|---|
|     |           |                     | â                        |   |

- If the temperature of the fish is  $10^{\circ}$  C after 7<sup>1</sup>/<sub>2</sub> minutes, (ii) show that the fish's temperature after t minutes is given by  $T = x + (18 - x)e^{\frac{2}{15}\log_e \left[\frac{10 - x}{18 - x}\right]t}.$
- Find the temperature of the fish after 15 minutes when the initial (iii) freezer temperature is  $5^{\circ}$  C. Answer to the nearest degree.

The velocity of a particle is given by  $v = 4\sqrt{x+1}$ . If the particle's (b) displacement after 2 seconds is 3 metres, find its displacement after 1 second.

3

3

1

### QUESTION 5 (9 Marks) START A NEW PAGE

- (a) Four digit numbers are to be formed from the digits 4, 5, 6, 7, 8, 9. Find how many 4-digit numbers can be formed if no digit to appear more than once in the number.
- (b) A rocket is fired at 30 metres per second at an angle of  $30^{0}$  to the horizontal at a fireworks display. After 2 seconds, it explodes into two equal particles. One part falls vertically downwards, while the other part gets projected at 60 metres per second at an angle of  $60^{0}$  to the horizontal.

Assume acceleration due to gravity is 10 metre per second squared and that both parts fall back on the same level ground.

- (i) Through what distance does the vertically falling particle travel when 2 it hits the ground?
- (ii) What is the time taken for the second particle to fall back to the ground? 3 (correct to the nearest second).
- (iii) What is the distance travelled by the second particle land from its 2 launching site, to one decimal place?

### QUESTION 6 (9 Marks) START A NEW PAGE

| (a) | 5 card<br>probab  | s are dealt out from a well-shuffled standard 52 card pack. Find the bility that this hand will contain:                   |   |
|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------|---|
|     | (i)               | the 4 queens and another card.                                                                                             | 1 |
|     | (ii)              | 2 jacks and 3 kings.                                                                                                       | 2 |
|     | (iii)             | a 3, 4, 5, 6 and 7.                                                                                                        | 1 |
| (b) | A part<br>is give | icle moves in a straight line and its position, x in metres at time t seconds<br>n by $x = 4 + \sin 2t + \sqrt{3} \cos 2t$ |   |
|     | (i)               | Prove that the particle is moving in simple harmonic motion about $x = 4$ .                                                | 2 |
|     | (ii)              | Find the period and amplitude of the motion.                                                                               | 2 |
|     | (iii)             | What is the speed of the particle as it travels through the equilibrium position?                                          | 1 |
|     |                   |                                                                                                                            |   |

# END of PAPER

2

John West Qs

(c) An inverted conical vessel, as shown below, is 50 centimetres in radius and 50 centimetres in depth. The vessel is being filled with water at a constant rate of 25 cm<sup>3</sup>/s. The depth of the water at any time *t* seconds is *h* centimetres.



Not to Scale

- (i) Show that the surface area of the cone can be expressed as  $A = \pi r^2 (1 + \sqrt{2})$ , where *r* is the radius of the cone.
- (ii) Hence, or otherwise determine the rate of increase of the surface area of the water when the depth is 20 centimetres.
- 3

2

2

- (c) A plane flying horizontally at an altitude of one kilometre and at a constant speed of 800 kilometres per hour passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing at the instant when the plane is four kilometres away from the station.
- (a) If two resistors with resistances  $R_1$  and  $R_2$  are connected in parallel, as shown in the figure below, then the total resistance R, measured in ohms, is given by



If  $R_1$  and  $R_2$  are increasing at rates of 0.3 ohm per second and 0.2 ohm per second respectively, how fast is R changing when  $R_1 = 80$  ohms and  $R_2 = 100$  ohms? Express answer to 3 significant figures. 3

Y.12 T2 Zu

| MATUS BXT  <br>MATHEMATICS: Question                                                          | 1     |                        |
|-----------------------------------------------------------------------------------------------|-------|------------------------|
| Suggested Solutions                                                                           | Marks | Marker's Comments      |
| a;) $X(t) = \frac{8}{3}t^3 + \frac{6}{7}t^2 - 24t + c$<br>$x = 7$ when $t = 0 \implies c = 7$ | 1     |                        |
| $\therefore x(t) = \frac{8}{3}t^3 + \frac{4}{5}t^2 - \frac{24}{5}t + 7$                       | 1     |                        |
| ii) X=16t+8                                                                                   | . 1+1 |                        |
| $iii)  \dot{x}(z) = 40  m/s^2$                                                                | /     | forgot mls -in         |
| iv) $8t^{-} + 8t - 24 = 0$<br>$t^{-} + t - 3 = 0$<br>$t = -1 \pm \sqrt{13}$                   |       | no marks if steps have |
| $t_{70}$ $t = -1 + \sqrt{13}$ pr                                                              | 1     | forget sec - Em        |
| 6;) 39916800                                                                                  | . 1   | 11 ! andy in           |
| ::) 10 × 32659200                                                                             | 1     | loix 9 aby in          |
| $(ii) = \frac{1}{\eta}$                                                                       | /     | 10/ x2 only in         |
|                                                                                               |       |                        |
|                                                                                               |       |                        |
|                                                                                               |       |                        |
|                                                                                               |       |                        |
|                                                                                               |       |                        |
|                                                                                               |       |                        |

J:\Maths\Suggested Mk solns template\_V2\_no Ls.doc

Year 12 Term 2 2009

MATHEMATICS Extension 1 : Question 2 Marks **Suggested Solutions** Marker's Comments a 20 sing d( 22) (it) t=0 2 D = 0X= 30 12 -20 x e e doc x = correct integration 02 22 + C e 5 c'value 12 +C c = 02 -200 Ø x e - 200 ø x Full explanation === 0 evers ops and 1 change whe 90 motion >0 for 00 e  $\frac{dt}{dx} = e^{\mathbf{X}}$ 2 20 (ii \_\_\_\_ . e 2 correct integral including"c U P P cloc LC = E=0 70=0 C=-P 1 R P 4 = ++1 -21

E: URAH M Fac Admin\Assessment info\Suggested Mk solns template\_V4.doc

Ypar12 Term 2 2009 MACHEMATICS Extension 1 : Question. **Suggested Solutions** Marks Marker's Comments O +++ (b) (i) 2005 x Ξ origin x = 02005 Ø Et () correctanswer. time re at por (11)im ime at 37 00 SIM O correct answer. Veloci 15 2m/S Dorrect accel. 00 7111 -2005 DC = t2 accepted. (-2) not accepted max acceleration S 2 1.9 + occurs when -2cos(t+ cos/t-T/4 31 77 ++O correct timo π . - · time 15 FIRSE time 15 Sec

E: URAH M Fac Admin\Assessment info\Suggested Mk solns template\_V4.doc

EXI MATHEMATICS: Question .3 Marks **Marker's Comments Suggested Solutions** (2) (i) <u>11.</u> 212121 If they forget the 21,21,27 - Oark Imark = 4989 600 2121 Ink of for each Znak 15:120 x = a ten (n+) it = an sec2 (nt) = an (cos (nt)) InK.  $\frac{1}{2} = -2an (cont)^{-3} - nSin(nt)$ =  $2an^{2} (Sinnt)$  $= \pm 2an^{2} \pm an(nt) + sec^{2}(nt)$ =  $2n^{2} sec^{2}(nt) + sec^{2}(nt)$ =  $2n^{2} sec^{2}(nt) + sec^{2}(nt)$ (as reation (nt)) as n must a positive -JESEE (nt) i and x = aten(at) 15 N=Noc Stook 4) 2N = N 10.5 5600 Imk =-1.24 × 10 =Ne =10 000 N= N=Nestor =N × 0.2900 Ink Percentage 15

\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template\_V4.doc

| 2009 EXT I MATHEMATICS: Question 4                                                                    |       |                                   |
|-------------------------------------------------------------------------------------------------------|-------|-----------------------------------|
| Suggested Solutions                                                                                   | Marks | Marker's Comments                 |
| a); Substitute T= x+Ae-kt into dT = k(T-x)                                                            |       | 'h off for no conclusion          |
| $LHS: dT = -kAe^{-kt}$ RHS: $-k(T-x) = -k(Ae^{-kt})$                                                  |       |                                   |
| an (x constant) =- k Ae- KC                                                                           |       |                                   |
| LHS=RHS T=X+Ae kt satisfies at = k(T-x)                                                               | 2.    |                                   |
| i) When t=0, T=18                                                                                     |       |                                   |
| : 18 = 2 + A (by substitution)                                                                        |       |                                   |
| $A = 18 - \pi$                                                                                        | 1     |                                   |
| When t=1%, T=10 -1544                                                                                 |       |                                   |
| 10 = x + Ae                                                                                           |       |                                   |
| $10 = x + (18 - x) e^{-15 k/2}$                                                                       |       |                                   |
| $\frac{10-\pi}{18-\pi} = e^{-15k/L} \Rightarrow \frac{18-\pi}{10-\pi} = e^{15k/L}$                    |       |                                   |
| $\frac{15k}{2} = ln(\frac{18-x}{10-x}) \implies k = \frac{2}{15}ln(\frac{18-x}{10-x})$                | L     |                                   |
| $T = x + (18 - x)e^{-3}ist \ln(\frac{18 - x}{10 - x})$                                                |       | Some leniency have                |
| $= \chi + (18 - \chi) e^{29/5} ln \left(\frac{10 - \chi}{18 - \chi}\right)$                           | l     | because of question<br>ambiguity. |
| When t=15 and $x=5$<br>T=5+13 e <sup>2</sup> (5/3) = 5+25                                             |       | <b>y</b> -                        |
| = 7°C (to nearest degree c)                                                                           | Ł     |                                   |
| b) $V = \frac{dx}{dt} = 4(x+1)^{n}$                                                                   |       |                                   |
| $\int \frac{dn}{(x+1)n} = 4 \int dt$                                                                  |       |                                   |
| $\frac{2(x+1)^{k}}{(k-1)^{k}} = 4t + k$                                                               | 1     |                                   |
| $(x+1)^{k} = 2t - 2$                                                                                  |       |                                   |
| When $t = 1$ , $(x+1)^2 = 0$                                                                          | 1     |                                   |
| $\frac{1}{2} \times \frac{1}{2} \left( 1 \text{ m to left } \mathcal{J} \times \frac{1}{2} 0 \right)$ | 1     |                                   |

J:\Maths\Suggested Mk solns template\_V2.doc



J:\Maths\Suggested Mk solns template\_V3\_all Ls.doc

| TERM 2 MATHEMATICS Extension 1 : Ouest        | ion. 5.05       | d7 2009                                                                                                         |
|-----------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| Suggested Solutions                           | Marks           | Marker's Comments                                                                                               |
|                                               |                 |                                                                                                                 |
| Question 7 (cont.)                            |                 | 7/1///                                                                                                          |
| (iii) When t= 2, x= 30 Cos 30 x 2             |                 |                                                                                                                 |
| = 60× 13                                      |                 |                                                                                                                 |
| × = 30/3 2                                    | $\odot$         | 5533 - 11 - 11 - 11 - 11 - 11 - 11 - 11                                                                         |
| Now x, = 60 Cosb0t                            |                 |                                                                                                                 |
|                                               |                 | 1 most for each                                                                                                 |
| z 30(3/3+/79)                                 |                 | Post                                                                                                            |
| = 317.4m                                      | r .             | • • • • • • • • • • • • • • • • • • •                                                                           |
| 10Tol distance = 317-4-m + 3013m              | G               |                                                                                                                 |
|                                               |                 | •••••••••••••••••••••••••••••••••••••••                                                                         |
|                                               | $\cap$          |                                                                                                                 |
|                                               | (2)             |                                                                                                                 |
| <u>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</u>  | 10              |                                                                                                                 |
|                                               | -               |                                                                                                                 |
| ๛๚ <i>๛๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚</i> |                 |                                                                                                                 |
|                                               | ei .            |                                                                                                                 |
|                                               |                 |                                                                                                                 |
|                                               |                 |                                                                                                                 |
|                                               |                 |                                                                                                                 |
|                                               |                 |                                                                                                                 |
| N.O.                                          | A.)             |                                                                                                                 |
|                                               |                 |                                                                                                                 |
|                                               | ~               |                                                                                                                 |
|                                               | ~               | ·····                                                                                                           |
|                                               | ~               |                                                                                                                 |
|                                               | -               | ganaanaa ayaana sacaanaa ahaanaa daaraada                                                                       |
|                                               |                 |                                                                                                                 |
|                                               | ~               | 2,000,911,201,112,300,201,201,201,201,201,201,201,201,201,2                                                     |
|                                               |                 |                                                                                                                 |
|                                               | 64 <sup>1</sup> |                                                                                                                 |
|                                               |                 |                                                                                                                 |
|                                               |                 |                                                                                                                 |
|                                               |                 |                                                                                                                 |
|                                               |                 |                                                                                                                 |
|                                               | ~               | ······································                                                                          |
|                                               |                 |                                                                                                                 |
|                                               | -               | *******                                                                                                         |
|                                               | 20              | **************************************                                                                          |
|                                               | 2               | And Anna and |
|                                               | -               | ,                                                                                                               |
|                                               | 5               | ***************************************                                                                         |
|                                               |                 |                                                                                                                 |
|                                               | ~               |                                                                                                                 |
|                                               |                 |                                                                                                                 |

\\mercury\staffhome\$\WOH\Admin\_M Fac\Assessment in fo\Suggested Mk solns template\_V3.doc

# 06

Year 12 Ext 1 2009 Term 2 - Question 6 Marking scheme

|         |                                                                                                                                                                       | mark | comment                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6a(i)   | $Pr ob. = \frac{{}^{4}C_{4} \times {}^{48}C_{1}}{{}^{52}C_{5}}$ $= \frac{1}{54145}$                                                                                   | 1    | No half marks                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Or<br>Pr $ob. = \left(\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50} \times \frac{1}{49} \times \frac{48}{48}\right) \times \left(\frac{5!}{4!}\right)$         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6a(ii)  | $\Pr{ob.} = \frac{{}^{4}C_{2} \times {}^{4}C_{3}}{{}^{52}C_{3}}$ $= \frac{1}{108290}$                                                                                 | 2    | 1 for numerator containing ${}^{4}C_{2} \times {}^{4}C_{3}$ with any other term                                                                                                                                                                                                                                                                                                                                                   |
|         | Or<br>Prob. = $\left(\frac{4}{52} \times \frac{3}{51} \times \frac{4}{50} \times \frac{3}{49} \times \frac{2}{48}\right) \times \left(\frac{5!}{3! \times 2!}\right)$ |      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6a(iii) | $Prob. = \frac{{}^{4}C_{1} \times {}^{4}C_{1} \times {}^{4}C_{1} \times {}^{4}C_{1} \times {}^{4}C_{1}}{{}^{22}C_{3}}$ $= \frac{64}{162435}$                          | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | Or<br>Prob. = $\left(\frac{4}{52} \times \frac{4}{51} \times \frac{4}{50} \times \frac{4}{49} \times \frac{4}{48}\right) \times (5!)$                                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                                                                                                                                                                       |      | Repeated incorrect expressions<br>(i) Pr ob. = $\left(\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50} \times \frac{1}{49} \times \frac{48}{48}\right)$<br>(ii) Pr ob. = $\left(\frac{4}{52} \times \frac{3}{51} \times \frac{4}{50} \times \frac{3}{49} \times \frac{2}{48}\right)$<br>(iii) Pr ob. = $\left(\frac{4}{52} \times \frac{4}{51} \times \frac{4}{50} \times \frac{4}{49} \times \frac{4}{48}\right)$<br>Max 2/4 |

|         | $\dot{x} = 2\cos 2t - 2\sqrt{3}\sin 2t$<br>$\dot{x} = -4\sin 2t - 4\sqrt{3}\cos 2t$<br>$= -4\left(\sin 2t + \sqrt{3}\cos 2t\right)$<br>$= -4\left(x - 4\right)  \text{since } \sin 2t + \sqrt{3}\cos 2t = x - 4$ |   | <sup>1</sup> / <sub>2</sub> for x<br><sup>1</sup> / <sub>2</sub> for showing $\ddot{x} = -4(x-4)$<br>Could also use $x = 4 + 2\sin(2t + \frac{\pi}{3})$<br>Or $x = 4 + 2\cos(2t - \frac{\pi}{4})$ |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6b(ii)  | Period = $\pi$ sec<br>Amplitude = 2 m                                                                                                                                                                            | 2 | 1 mark for each answer                                                                                                                                                                            |
| 6b(iii) | Speed = 4 m/s                                                                                                                                                                                                    | 1 | 1 for correct speed<br>½ if speed negative                                                                                                                                                        |