JRAHS EXT 1 T2 2010

Question 1

X.		
(a)	Prove that $\frac{d}{dx}(\frac{1}{2}v^2) = \ddot{x}$.	2
(b)	The acceleration of a creature is given by $\ddot{x} = -\frac{1}{2}u^2e^{-x}$ where x is the	
	displacement from the origin and u is the initial velocity at the origin.	
	Given that $u = 2$ and v is the velocity at time t.	
(i)	Show that $v^2 = 4e^{-x}$.	2
(ii)	Explain why $v > 0$ for $t \ge 0$.	1
(iii)	Find x in terms of t.	2
(iv)	Describe the motion of the creature (Give reasons)	2

Marks

Question 2 (Start a new Page)

(a) A particle *P* moves along a straight line. A velocity-time graph for *P* is shown below. The graph is tangent to the *x* axis at x = 1.

(i)	Between what times does the particle travel to the right ?	1

(ii) Sketch a displacement – time graph for P given that the particle starts 2 units to the left of the O.

Question 2 continued

(b) When a person dies, the temperature of their body will gradually decrease from 37°C(normal body temperature), to the temperature of the surroundings. Newton's law of cooling states that the temperature of the cooling body changes at a rate proportional to the difference between the temperature of the body and the temperature of its surroundings.

That is
$$\frac{d\theta}{dt} = -K(\theta - R)$$
(1)

Where *K* is a positive constant, θ is the temperature of the body after *t* hours, and *R* is the temperature of the surroundings.

A person was found murdered in his house. Police arrived on the scene at 10:56 pm. The temperature of the body at that time was 31 °C, and one hour later it was 30 °C. The temperature *R* of the room in which the body was found was 22 °C.

(i)	Show that $\theta = 22 + Ae^{-Kt}$ is a solution of equation (1), where A is a constant.	1
(ii)	Find the exact values of A and K.	2
(iii)	Determine the time when the murder was committed, correct to the nearest minute.	3
Ques	tion 3 (Start a new Page)	
(a)	From the letters of the word RENEGADE, three are taken at random and placed in a line.	
(i)	How many different 3 letter sequences are there with exactly one E in the sequence?	1
(ii)	How many different 3 letter sequences are there altogether?	3
(b)	The speed, v cm/s, of a particle moving along the x-axis is given by $v^2 = 72 - 12x - 4x^2$.	
(i)	Show that the motion is simple harmonic.	2

(ii) Find the period and amplitude of the motion. **3**

Ques	stion 4 (Start a new Page)	Marks
(a)	Katie is a member of a 9-player softball team.	
(i)	In how many ways can they bat if Katie bats in the 9 th position?	1
(ii)	There are two left-handers in the team. If the batting order is randomly selected, what is the probability that the left-handers will be in the 1^{st} and 9^{th} positions?	2
(b)	The rate of change of the number of rabbits infected by a disease is given	
	by the equation $\frac{dN}{dt} = N(100 - N)$, where N is the number of infected	
	rabbits at time t years. There are 100 rabbits originally.	
(i)	If k is a constant, show that $N = \frac{100}{1 + ke^{-100t}}$ satisfies the above equation	2
(ii)	If at time $t = 0$ one rabbit was infected, after how many days will half the number of rabbits be infected, correct to two decimal places?	2
(iii)	Sketch the graph of $N = \frac{100}{1 + ke^{-100r}}$.	2
Ques	stion 5 (Start a new Page)	
(a)	In March this year, the 8 quarterfinalists of the 2008 Champions League Football competition were randomly drawn into 4 quarterfinals .	
	4 of the quarterfinalists were English teams: Manchester United, Liverpool, Chelsea and Arsenal.	
	The other 4 quarterfinalists were from mainland Europe: Rooma, Barcelona, Schalke and Fenerbahce.	
	Note that this is a knock-out competition where the team beaten will be out of the competition	
(i)	Find the number of different quarterfinal draws possible.	1
(ii)	What was the probability that at least one quarterfinal was played between 2 English teams?	2

Que (b)	stion 5 continued The depth <i>x</i> metres of the water in a certain South Coast harbour is found	Marks		
	to vary approximately according to the equation $\ddot{x} = -\frac{x}{4}$.			
	Given that t is the time in hours and it is known that the difference between high and low tide is 4 metres.			
(i)	Prove that the time between successive high tides is 12.6 hours, correct to the nearest $\frac{1}{2}$ of an hour	2		
(ii)	the nearest — of an hour. 10 Find the rise in the water level during the first hour after low tide. Give your answer in metres, correct to two decimal places.			
(iii)	Find the rate at which the level is falling two hours after high tide. Give your answer in metres per hour, correct to two decimal places.			
Que (a)	stion 6 (Start a new Page) A particle moves such that its displacement (x) is given by the equation: $x = 3\cos 5t + 4\sin 5t$, where t is the time taken. Find the maximum displacement of the particle.	2		
(b)	Pete and Graham are both standing 50 metres apart on level ground. Pete throws a ball from a height of 1.9 metres which Graham catches 2 seconds later (without bouncing), also at a height of 1.9 metres.			
	 You may assume: 1. there is no air resistance and the value of g is 10m/s² 2. the equations of motion are : 			
	$\dot{x} = V \cos \alpha$ $\dot{y} = -10t + V \sin \alpha$			
	$x = Vt \cos \alpha \qquad \qquad y = -5t^{-2} + Vt \sin \alpha + 1.9$			
	where V is the initial velocity, α is the angle of projection, t is the time taken and the origin is at Pete's feet.			
(i)	Find the initial speed and the angle of projection to the nearest minute.	3		
(ii)	Find the maximum height of the ball above the ground.			
(iii)	Pete throws another ball with the same initial velocity and from the same starting height (1.9 metres above the level ground), but he wants to maximize the distance he throws horizontally.	3		
	How far away should Graham now stand away from Pete in order to catch this second throw without the ball bouncing and at a height of 1.9 metres?			

Question 7 (Start a new page)

In the diagram above, a projectile is fired from a point O at the top of a vertical cliff. Its initial speed is V m/s and its angle of projection is α . Let the acceleration due to gravity be g m/s².

You may assume no air resistance and the equations of motion are:

$$\dot{x} = V \cos \alpha$$

 $\dot{y} = -gt + V \sin \alpha$
 $x = Vt \cos \alpha$
 $y = -\frac{1}{2}gt^2 + Vt \sin \alpha$

Let *G* be the point on the projectile's path where the distance below the origin equals the distance to the right of the origin. That is, OF = FG on the diagram above.

- (i) Prove that the time taken for the projectile to reach *G* is $\frac{2V(\sin \alpha + \cos \alpha)}{g} \text{ seconds.}$ (ii) Hence, show that $OF = \frac{V^2}{g}(\sin 2\alpha + \cos 2\alpha + 1)$ metres
 (iii) Let *A* be the point on the projectile's path where it is level with the point **4**
- (iii) Let *A* be the point on the projectile's path where it is level with the point of projection. If $OF = \frac{4}{3}OA$, find α , correct to the nearest degree.

END

Page 5 of 5

Marks

YIZ MATHS EXT) TERMZ ASSESSMENT TASK3 2010

Suggested Solutions Marker's (Marker's (Marker's (Marker'			n. /	IATICS Extension 1 : Question	MATHEM
$ \begin{array}{c} (1+y) = d(y^{1}) = d(y^{1}) = d(y^{1}) = d(y^{1}) \\ dx & dy & dt \\ = -y, dy & -y & -y^{1} \\ = -y, dy & -y & -y^{1} \\ = -y, dy & -y^{1} \\ =$	Comments	Marker's Co	Marks	tions	Suggested Solut
(b) (i) Pata $t = 0$ $x \ge 0$ $y \ge u = 2$ $\ddot{x} = -2$ $y \ge 1$ $y \ge 1$ y	2		- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	RHS $\ddot{x} = dv$ dt dt dx dx dt	$ \begin{array}{c} \bullet \\ \bullet $
(i) Since $\sqrt{2} = 4e^{-2k} > 0$ as $e^{-k} > 0$ $\forall x \in lR$ $(x + \sqrt{2} > 0)$ $(x + \sqrt{2} > 0)$ (x +	2			$v = u = 2 \ddot{x} = -2$ (b) $\int d(\pm v^{2}) = \int -2e^{-x}$ $(u = 2 v o)$ $\frac{1}{2}v^{2}I = +2e^{-x}I$ $\frac{1}{2}I v^{2} - 4I = 2[e^{-x} - v^{2}]$ $\frac{1}{2}I v^{2} - 4I = 2[e^{-x} - v^{2}]$ $(v^{2} - 4I = 2[e^{-x} - v^{2}]$ $\frac{1}{2}I v^{2} - 4I = 4e^{-x} q = 0$	(b) (i) p_{cata} : $t = 0$ $x = 0$ $p_{2u/s}$ $x = -i u e^{-x} = -2e^{-x}$ $y = -2e^{-x}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tl)	$if \sqrt{2} > 0 =$ $\sqrt{40} = 1$ $while N0$ $x = 2 \ln(t+1)$ $\sqrt{2} = \frac{2}{5+1} \neq 0$	La tion La	$s e^{-x} > 0 \forall x \in \mathbb{R}$ s or v > 0 !!! z b ne change dire $oght initiallys r t \ge 0$	(i) since $\sqrt{2} = 4e^{-4} > 0$ as $\sqrt{2} > 0$ $\sqrt{2} $
	2	ž	12	from (ii) $V > 0$ x + x + t $\int e^2 dx = \int 2 dt$ $2e^2 \int e^2 = 2t \int 0$ $2\int e^2 - e^2 f = 2t$ $e^2 x + 1 = t$ $e^2 x + 1 = t$ $e^2 x + 1 = t$ $e^2 x + 1 = t$	(iii) $V = \int 4e^{-k} = 2e^{-\frac{1}{2}k}$ $\frac{dx}{dt} = 2dt$ $\int e^{\frac{1}{2}k} dx = \int 2dt$ $\frac{2e^{\frac{1}{2}k}}{1} = 2t + c$ $\frac{1}{2}$ $\frac{1}{2} = 0 + c$ $\frac{1}{2} = 2 + c$ $\frac{1}{2} =$

MATHEMATICS Extension 1 : Question			
Suggested Solutions	Marks	Marker's Comments	
(iv) Nobe $\dot{x} = -2e^{-\lambda}$, $v = 2e^{-\lambda}$, $x = 2ln(t+1)$ att=0: the creature is at the origin nov Initially to the right with a velocety of 2 u with an acceleration of $-2u/s^2$ Latto. As the applied force ($\ddot{x} = -2e^{-\lambda}$	i neg (=		
is negative (acting to the left) the creature is being slowed do It continued to move to the righ is definitely but clows down bu it will never come to rest (V20 X10	(E + + 1)	-17	

.

Marks Suggested Solutions Marker's Comments (1)Panuelo moves oste3 orsimilar to the I_ $0 \le t$ < 七キし 12 t < 3 < no marks lost $for including \\ t = 3.$ Ì n 2 less than Bunit 2012HOPINFIEXION max D shape. D correct stat Point values. O 3 4 stationary points had to be ptofinflexion horiz Starts $\mathcal{D}\mathcal{C} =$ horizontal

E:\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

MATHEMATICS Extension 1 : Question..... Suggested Solutions Marks Marker's Comments 6+ 2(b)(1) AP P 27 + 7 -R R = 22R O pt 0 2 RE O full proof. S genera 5 solution e2 2P -RXO + e 14 + $\bigcirc A = 9$ whe (A=15 if t=0) when 0=37) bx 22 -0 () k = ln % 3 R correct (1)C Substitution b t O traine -078 005 3 Interva nearest min) RSZOMINS Time TIME 4:20 _ 0:56 ---answer. \simeq pm 36 (i)

E:\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

2010 Year 12 Term 3 Assessment – Ext 1 – QUESTION 3 Marked by L.Kim) Marking Scheme

(a)	Total: 4 marks RENEGADE has 3 E's and 5 other letters	EEE RNADA	
(i)	 3 letter sequence with 1 E → 1 way for "E" → ⁵C₂ ways picking the other 2 letters → 3! To arrange the 3 letters in the line. 		
	$\therefore \text{ ANSWER} = {}^{5}\text{C}_{2} \times 3! = 60$	[1 Mark]	

Alternatively \rightarrow 1 way to place the "E" and 5 × 4 ways to place the other 2 letters in a line, BUT there are 3 ways to place the "E" \therefore ANSWER = 5 × 4×3 = 60

(ii)	Any 3 letter sequence	
	\rightarrow including 1 "E" = 60 from above	
	\rightarrow including 2 "E's" = ${}^{5}C_{1} \times 3 = 15$	[1 Mark]
	\rightarrow including 3 "E's" = 1 way only	[½ Mark]
	\rightarrow sequence with no "E's" = ${}^{5}C_{3} \times 3!$	[1 Mark]
	Total = 60 + 60 + 15 + 1 = 136	[½ Mark]

*This question was quite poorly done, with students getting confused with the concepts of Permutations and Combinations

(b) Total 5 Marks

(i)
$$v^2 = 72 - 12x + 4x^2 \quad \Rightarrow \ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right) = -6 - 4x \Rightarrow [1 \text{ Mark}]$$

Now $\ddot{x} = -4\left(x - \left(-\frac{3}{2}\right)\right)$ which is of the form $\ddot{x} = -n^2(x-b)$
where $n = 2$ and $b = -\frac{3}{2}$. $\Rightarrow [1 \text{ Mark}]$
• If the used $v^2 = -n^2(a^2 - (x-b)^2) \Rightarrow 0$ Marks
• If students had $\ddot{x} = -4\left(x + \frac{3}{2}\right)$ and had $\ddot{x} = -n^2(x-b)$ and stated $b = -1.5$, then
full marks HOWEVER, if didn't state value of b then lost $\frac{1}{2}$ mark.
• If students had $\ddot{x} = -4\left(x + \frac{3}{2}\right)$ and $\ddot{x} = -n^2(x+b)$ then lost 1 mark
(ii) Period = $\frac{2\pi}{2} = \pi$ seconds $\Rightarrow [1 \text{ Mark}]$
 $72 - 12x + x^2 = 0$ to find extremity of motion.
 $\therefore (x + 6)(x - 3) = 0 \Rightarrow \therefore x = 3 \text{ or } -6$
Thus the motion oscillates between $-6 \le x \le 3 \Rightarrow [1 \text{ Mark}]$
 \Rightarrow amplitude = $\frac{1}{2}(3 - 6) = \frac{9}{2}$ or 4.5 cm $\Rightarrow [1 \text{ Mark}]$

TZ 2010. MATHEMATICS Extension 1 : Question...... **Suggested Solutions** Marks **Marker's Comments** R' α 40320) ZX 7! 5 1 some had sample space wrong ŀ y I 100 -100,t 1440 that inc= 100ak dA 100] ÛĽ UK & 145 5 100-100 101 100 14ko-toot COXICO 5 let + 1+Ki wort LHSERAS ホニタめ x=0 んこ teo 50= LAMA SLORIZ In 99 1/2 Z 2 students desaned 365 days/yr. 10 12 0:0459 ys Time al t () t was blefined in ylows. Scaling by many students prof. Many Longot Locking put 50 2_ 0.04545

J:\Maths\Suggested Mk solns template_V3.doc

ERM2 2010 EXT I MATHEMATICS: Question 5		
Suggested Solutions	Marks	Marker's Comments
 a) j) Question should read "Find the number of different quarter finds draws are possible" MU can be picked against 7 sides (leaving 6 teams still to fix up) Next can pick opposition 5 ways (leaving 4 teams) Next can pick opposition 3 ways. Next can pick opposition 3 ways. Next can pick opposition 7x 5x 3x1 = 105 ii) Find ways that no English team plays each other. Mu can play any A 4 teams L " 2" A mut play remains team. A mut play remains team. 		This was complicated by the wording. gf '4' was answered, no less than I mak could be awarded. If the find answer was correct, no less than 2 could be given (Many got extra factor of 4.' in both pats). gf complementary probabilities were used, at least '2 was awarded.
Prob (No English playing each other) = 105 35 Prob (At least one final with 2E) = 1 - 8/35 = $\frac{27}{35}$	2	
);) This is SHM with $n^2 = \frac{1}{4}$ $n = \frac{1}{2}$ ($n > 0$) Period = $2\pi = 4\pi = 12.56$ Time between successive highs is $\underline{12.6h}(24)$ ii) 2^{+} Let solve be $x = -2\cos \frac{1}{2}$ as shown. t at $t = 0$, $x = -2at t = 1, x = -1.76 t = 0, x = -2at t = 1, x = -1.76 t = 0.24 \text{ m}.Could use above butuse x = 2 \cos \frac{1}{2} \Rightarrow v = x = 5 \sin \frac{1}{2}dt t = 2 v = -5 \sin \frac{1}{2}t = -0.84 Tide falling at 0.84 \text{ m/h}.$		Too many people had calculator in degrees mode-they should have smelt a problem. Could use same equation as (ii) with t = 2TT+2.

 $Aaths Suggested Mk solns template_V2.doc$

,

TOSTO 2. ZOIO MATHEMATICS Extension 1 : Question	n .6	
Suggested Solutions	Marks	Marker's Comments
$\frac{b(\alpha)}{b} = R\cos 5t + 4Sm5t = R\cos (5t - x)$ $= R\cos 5t \cos x + \sin 5t \sin $	i	Only showing $R = \sqrt{32+42}$ = 5 gets a max. of 12 marks
$\frac{QR}{P} \frac{1}{1} 1$	1	
(b) (b) (b) (a) 197 197 197 197 2 = VGSS y = -10t tvSing y = -5t + vtSingt1.9 Now t = 2, z = 50 When t = 3, y = 1:9 Now t = 2, z = 50 When t = 3, y = 1:9 Now t = 2, z = 50 When t = 3, y = 1:9 Subject to z = vtGSS Subject to z = vtGSS Subject to z = vtGSS Subject to z = vtGSS Subject to z = vtGSS (a) = (1) VGSS 25 (a) = (1) VGSS 25 (a) = (1) VGSS 25 (a) = (1) VGSS 25 (b) (c) = (1) (c) = (1) VGSS 25 (c) = 21° 48 (recrest mmute) (3) OR d = 0:3805° (udp) Subject to source v=502 Net county = 26-92 (c) = (2dp) Exact assures v=502 Net county = 26-92 (c) = vtSin3d V = 20° 48 velocity = vtSin3d V = 125 V = 5029 V = 5029 (c) = vtSin3d V = 5029 (c) = vtSin3d (c) = vtSin3d (i i svzq	$\frac{1}{2}$ mark for 25=V600 $\frac{1}{2}$ mark for 10=VSind Leaving answer as Tan $\frac{1}{2} = \alpha^{\circ}$ lost $\frac{1}{2}$ mark No penalty for $V^{2} = 725$ $V = \sqrt{725}$ m/s and not discounting - $\sqrt{725}$ as the question required a speed.

 $\label{eq:callisto} $$ \ WOH\ B A M Fac Admin\ Suggested Mk solns template_V4.doc Admin A suggested Mk solns templateAdmin Admin A suggested Mk solns templateAdmin Admin Admi$

Term 7 2010 MATHEMATICS Extension 1 : Question				
Suggested Solutions	Marks	Marker's Comments		
$\frac{6(b)(ii)}{10} For max beight y = 0$ $-10t + vsind = 0$ $= 10t + 10 = 0 as vSmc = 10$ $t = 1sec$ $at t = 1sec$ $y = -5 \times 1 \pm 10 \times 1 \pm 1.9$ $= 10 - 5 \pm 1.9$ $\therefore y = b - 9$ $\therefore Max beight & ccurs & at & b - 9m$) 1	$\frac{1}{2}$ mark awarded For $t = \frac{VSma}{10}$		
(111) $V = 5\sqrt{29}$ and $V = 10$, $y = 1.9$ Sub into $y = -5t^2 + vt = 5 \ln \alpha + 1.9$ $i = -5t^2 + vt = 5 \ln \alpha$ $5t^2 = vt = 5\sqrt{29} + 5 \ln \alpha$ $5t = 5\sqrt{29} + 5 \ln \alpha$ $t = \sqrt{29} + 5 \ln \alpha$ $t = \sqrt{29} + 5 \ln \alpha$ $r = \sqrt{29} + 5 \ln \alpha$ $r = 145 + 5 \ln \alpha \cos \alpha$	- 2,4	sc=45° for max. Tange scored fr		
Grabon should stand 72.5m from Pete $\frac{OR(ii)}{For Grabon to catch the ball y = 1.9m}{For Grabon to catch the ball y = 1.9m}$ $\frac{1.9 = -5t^{2} + vt \sin \alpha + 1.9}{v2}$ $\frac{t(5t - \frac{v}{2}) = 0}{v2}$ $\frac{t(5t - \frac{v}{2}) = 0}{v2}$ $\frac{t(5t - \frac{v}{2}) = 0}{v2}$ $\frac{t = 0}{v2} = 5t$				

 $J:\Maths\Suggested\ Mk\ solns\ template_V3_all\ Ls.doc$

Question 7
(a)
$$x = -y$$
 at G.
 $x = -(-\frac{1}{2}at^{2} + vtsind)$
 $x = \frac{1}{2}at^{2} - vtsind$ (b)
 $x = \frac{1}{2}at^{2} - vtsind$ (c)
 $x = \frac{1}{2}at^{2} + vtsind$ (c)
 $x = \frac{$

distance OH is? DC = V Cosd (2V Sind) = 2N² Sind Cost $= \frac{\sqrt{5}}{9}$ 1,2 Criven OF= \$0A (data) $\frac{v}{q}\left(\sin 2d + \cos 2d + 1\right) = \frac{4}{3} \cdot \frac{v}{q} \cdot \sin 2d = \frac{4}{3} \cdot \frac{v}{q} \cdot \sin 2d = \frac{1}{3} \cdot \frac{v}{q} \cdot \frac{1}{3} \cdot \frac{v}{q} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{v}{q} \cdot \frac{1}{3} \cdot \frac$ Sin 2 + + cos2 d + 1 = <u>4 sin 2 d</u> 35in dd + 3cos 2d + 3 = 45in 2d36032×+3=5in2× (2) 3(26052-1)+3=51022 6052-3+3=25indcosd 6 cost = Bind Cost = 0 $2\cos d(3\cos d - 5ind) = O(\overline{z})$: cosd =0 2=90° { bit ord <90° ($\langle (\mathbf{r}) \rangle$:.~+90°

$$3\cos d = \sin d$$

 $3 = \tan d$
 $\therefore d = 71^{\circ}34^{\circ}$
 $d = 72^{\circ}$
(nearest dearee)