QUESTION 1 (9 Marks)

(ii)

3

2

(a) A particle is moving in a straight line so that at t seconds it is x metres to the right of the origin O. Its velocity $v \text{ ms}^{-1}$ is described by the equation

Find the centre, period and amplitude of the motion.

 $v^2 = 24x - 20 - 4x^2$

(i)	Show that the particle is moving with Simple Harmonic Motion.	2

(b) A boy had 10 coins and 4 identical envelopes. He put 1 coin in the first envelope, 2 coins in the second, 3 coins in the third and 4 coins in the fourth envelope. As he put the envelopes into his bag, one coin fell out of one of the envelopes.

(i)	What is the probability that the coin fell out of the fourth envelope?	1
	(assume all the coins had an equal chance of falling out)	

(ii) He then chose one of the envelopes at random. What is the probability3 that this envelope had an odd number of coins in it?

QUESTION 2 (9 Marks) Start a new page

(a) A committee of 4 people is to be chosen from a group of 6 men and 5 women. At least one man and one woman must be on the committee.

What is the probability that a committee chosen at random will consist of a majority of men?

(b) The output voltages of two electric circuits are varying according to the differential equations

$$\frac{dV_1}{dt} = -0.12(V_1 - 10)$$
 and $\frac{dV_2}{dt} = 0.08(V_2 - 5)$

where t is the time in minutes after they are switched on and V_1 and V_2 are the output voltages of the circuits respectively in Volts.

The circuits are turned on at the same time.

- (i) Show that $V_1 = 10 + 15e^{-0.12t}$ is a solution to the first differential equation. 2
- (ii) Initially $V_2 = 10$. Write a formula for V_2 as a function of t. 2
- (iii) The two circuits are connected so that their output voltages are added together 3when they are switched on. When will the minimum total output voltage occur?

QUESTION 3 (9 Marks) Start a new page

2

(a) The James Ruse Knitwits decide to knit scarves. They have 10 different coloured wools from which to choose. Each scarf may consist of any number of the 10 colours.

(i)	How many different wool colour combinations are possible?	1
(ii)	One student chooses a colour combination at random. What is the probability that the student uses 6 colours for his scarf?	1

(b) The number of hours of daylight during the year at a particular location can be approximately modelled by the Simple Harmonic Motion equations. At this location the longest number of hours of day light is 16 hours and 'shortest' day has 10 hours of daylight.

A particular species of plant will only produce flowers when it receives 14 or more hours of daylight.

(i) Sketch a graph showing the number of Hours of Daylight against the number of days after the 'shortest' day, for 1 year. (1 year = 365 days)

Let H = Hours of Daylight and t = number of days after the 'shortest' day.

(ii) Write the equation for the graph in the form $H = A - B \cos\left(\frac{2\pi t}{365}\right)$, 1 where *A* and *B* are constants.

(iii) How many days of the year is the plant expected to have flowers on it? 4

QUESTION 4 (9 Marks) Start a new page

A particle is projected upwards with a velocity of 40 ms^{-1} at an angle of 60° to the horizontal from a point 100 metres above ground level.

You many assume the projectile motion equations.

 $x = Vt \cos \alpha$ and $y = Vt \sin \alpha - \frac{1}{2}gt^2$ (use $g = 10 \text{ ms}^{-2}$ as the acceleration due to gravity)

(i)	Calculate the time taken to reach the highest point of the particle's trajectory.	2
(ii)	What is the maximum height above the ground reached by the particle?	1
(iii)	Find the exact time that the particle is in the air.	3
(iv)	How fast is the particle travelling as it hits the ground?	3

QUESTION 5 (9 Marks) Start a new page

A particle is released from rest at a position $\frac{5\pi}{4}$ metres to the right of the origin and travels in a straight line. Its acceleration is described by the equation

$$\frac{d^2x}{dt^2} = 2\cos x$$

where x is the displacement in metres from the origin O and t is the time in seconds.

(i)	In which direction will the particle first move? Justify your answer.	2
(ii)	Show that its velocity is given by $v^2 = 4\sin x + 2\sqrt{2}$.	3
(iii)	Where is the particle stationary? Explain your answer.	3
(iv)	Is the particle's motion Simple Harmonic? Justify your answer.	1

QUESTION 6 (9 Marks) Start a new page

- (a) The numbers 1, 2, 3, 4, 5, 6, 7, 8 are arranged in a circle.
 What is the probability that at least 3 odd numbers are together?
- (b) A new species of bird was introduced onto an island. To study the spread of the species across the island, scientists counted the number of nests (*N*) each year and determined that the number of nests could be calculated by the using the equation

$$N = A + (N_0 - A)e^{-kt}$$

where N_0 , A and k are constants and t is the number of years after 1 January 2009.

The following table shows the scientists' results for three years.

Date	1 January 2009	1 January 2010	1 January 2011
Number of Nests	1100	1500	1800

- (i) Calculate the values of N_0 , A and k.
 - (ii) What is the predicted maximum number of nests?

4

1

QUESTION 7 (9 Marks) Start a new page

The acceleration of a particle moving in a straight line is given by

$$\frac{d^2x}{dt^2} = -0.05v^3$$

where x is the displacement in metres from the origin O and v metres per second is the velocity of the particle at time *t* seconds.

When t = 0 the particle passes the origin with a velocity of 10 ms⁻¹.

(i) Show that
$$v^2 = \frac{100}{10t+1}$$
 4

(ii)	Find the time for particle to travel 20 metres?	4
(iii)	Briefly describe the motion of the particle.	1

(iii) Briefly describe the motion of the particle.

END OF EXAMINATION

.

VI2 MATHEXTI. ASSESSMENT TASK3 TERM 2, 2011

MATHEMATICS Extension 1 : Question	on	
Suggested Solutions	Marks	Marker's Comments
b) t committee of 4 from 6M and 5W with at on the committee. [: conditioned] Cases for comm. M(6) W(5) N° of ways 3 1 6(3x ²), = 100 2 2 6(-x ²), = 150	Least	1 M and 1W (L) For ⁶ C(x ⁵ C)x ⁹ C2 although F.
$\frac{1}{3} = \frac{6}{5(1 \times 5(1 - 60))}$ $\frac{1}{3} = n(E = (3, 1)) = \frac{6}{3 \times 5(1 - 60)}$ $\frac{1}{310} = \frac{10}{31}$	~ ~ ~ ~ ~	$n(s) = \frac{1}{c_4} - \frac{6}{c_4} - \frac{5}{c_4} = \frac{1}{2}$ $\frac{1}{c_4} = \frac{100}{c_4}$ $\frac{100}{c_4} = \frac{100}{c_4}$
$\frac{dV_{1}}{dt} = -0.12 (V_{1} - 10) ; dV_{2} = 0.08 (V_{2} - 10) ; dV_{3} = 0.08 (V_{3} - 10) ; dV_{4} = 0.08 (V_{5} - 10) ; dV_{5} = 0.08 (V_{5} - 10) ; dV_{5} = 0.08 (V_{5} - 10) ; dV_{5} = -0.02 (V_{5} - 10) ; dV_{5} = -0.02 (V_{5} - 0.02) ; dV_{5} =$	- 5) 12(10- 2t) Lution	1 For LHS = 15e - 60) = For RHS = For Conclusion = to the 1 st DE.
$\frac{dV_{l}}{dt} = \frac{15 \times (-0 \cdot 12) e^{-0 \cdot 12t}}{e^{-0 \cdot 12} e^{-0 \cdot 12 \times 15t}}$ $\frac{dV_{l}}{dt} = -0 \cdot 12 (V_{l} - 10) \qquad do \qquad 15e^{-0 \cdot 12t}$ $\frac{dV_{l}}{dt} = -0 \cdot 12 (V_{l} - 10) \qquad do \qquad 15e^{-0 \cdot 12t}$	$e^{-0.12}$ $I = V_1$ $R_1 = 0$	t -LO sked! was given!
$\frac{dV_{2} = 0.08(V_{2} - 5)}{dt}$ $\frac{dV_{2} = 5 + Be}{as} PE is of the bod t = 0,08t$ $\frac{dV_{2} = 5 + Be}{as} PE is of the bod t = 5 + B$	Scem	For Vy = 5+
$\frac{1}{V_1} = 5$ $\frac{1}{V_2} = 5 + 5e^{-0.08t}$	1/2 congran	12 For B=5 2 m/syllabor peason to remove -1 Mk.

\\TITAN\StaffHome\$\\\\\\Backson h92\\\RAH M Fac Admin\Assessment in fo\Suggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question. Marks **Marker's Comments Suggested Solutions** (أأ) (ط Let $V = V_1 + V_2$ 0.08t -0.02t i.e V = 15 + 5e + 15e+20 0.4e - 1.8e 1 For di dv dt x for possible max/min values of V to occor dV = 0 dt ______ for 'explaining đt 0.08t _0.12t = 0 _0.122 = 1.8e 0.09t 10 0.4e = 18 eo.izt e.08t_0.12t $=\frac{1-8}{0.4}=\frac{9}{2}=4.5$ xe e 0-20t $= \ln 4.5$ = $\ln 4.5 = 5\ln 4.5 = 7.52...$ 0.26 + 0.2 = 30.209 .. = 5x (0-5) e 0.08t + 15x (0-12) e - 0.12t TEST nature 6.0.Bt 22 + 0.216e = 0.032e and e >0 + + >0 0^0&t 20 as e or di 1 For Test >0 = 0.146 ... dt2 : concave opus ærds ænd since æ : ce Relative min tP at t=7.52. SP Э 40 35 0.05t -0.12t 1-200 V-200 ± For justifying cebs min at t= 5/114.5 0 is continuous and there are no other TPS fortto AS V the absolute min occurs when t= 51n45. Le. the time is 7.52 minutes (2dp) $x_{ay} = 5e^{0.08t}$, $y_1 = 15e^{-0.02t}$ If ADD 2 courses Note:¥.... Y1 = 5e 0.08E 20 15 $t_1 = 5 \ln 3$ $Y = Y_1 + Y_2 = 15.518...$ 10 Y2 = 15e 0.12t tz= 51n4.5 Y=Y,+Y,=15.209... (min) 5 Ð t2 ta 2.

MATHEMATICS Extension 1 : Question 3. **Suggested Solutions** Marks **Marker's Comments** 2`° a) Each colour either used or not used Rule out case Men no cotour chosen $2^{10} - 1 = 1023$ ii) Rifferent ways of choosing 6 is $\frac{10}{1023} = \frac{210}{1023} = \frac{70}{341}$ - p (6 cstom) =_ ł 12 for shape 12 for period b) i) 16-(182.5,16) 2 (Hom)iz. for amplitude for centre (implied) 10 6 Ł 365 L(days) 0 182.5 ii) lyinen H= A-B cus 271L 365 (Shen t=0, H=10 ⇒ 10=A-B Mun t=182.5, H=16 ⇒ 16 = A + B These some to A=13, B=3 (1 each) H = 13 - 3 cos 2πt 365 iii) Find range of t so that H > 14 1 for equation 1 for general-form or implied equivalet 13-3cos 2775 > 1 1,1 for each time cro 277E <-1 365 3 4 1/2 for adding endpoint First two solutions of cos 0=-1/2 are 1.9106 and 21T-1.9106 . . III ≤ t ≤ 254 Since both end day flover, it flowers

J:\Maths\Suggested Mk solns template_V3_all Ls.doc

Extension [201] MATHEMATICS Extension 1 : Questi	on.4	TERM 2
Suggested Solutions	Marks	Marker's Comments
18224		
(i) highest point is when $y=0$		
$\dot{y} = V S(n K - qt)$		
$\frac{1}{0} = \frac{1}{405mb^{2} - 10t}$	1	
$+ = \frac{40}{10} \times \underline{B}$		
t = 213 seconds Trae taken is 213 seconds	l	to mark deducted
$(ii) y = x \pm Sing - \pm g \pm 2 \pm 100$		tor no units
$= \frac{40 \times 2\sqrt{3} \times \sqrt{3} - \frac{1}{2} \times (2\sqrt{3})^2}{2}$		
= 120-5×4×3+100		
y = 160 Highest point is 160m above the ground	1.	t mark only for 60m
(iii) Porticle strikes the ground when $y=0$ $G = VtSmc - 5gt^2 + 100$		
$0 = -5t^2 + 4053t + 100$		
$5t^2 - 20/3t - 10^2 = 0$	1	
$t = 2003 \pm V_{1200} + 4(5)(100)$		Scored a max. of
$= \frac{20(3 \pm 1)3200}{10}$		I maste as que was simplified.
$\frac{2013 \pm 1012}{10}$ time = (253 + 452) seconds as t>0	(Decimal epprox. lost timork
$\frac{1}{1} = \frac{1}{2000} = \frac{1}{100} = \frac{1}{$	54.74	$\dot{z} = 20$ $\frac{1}{2}$ mark $\dot{y} = -40\sqrt{2}$ $\frac{1}{2}$ mark
Speed = 1 × 1 = V= + y? es speed>0	1	
$\frac{1}{5} = \frac{1}{5} $	1	- 2 for not 9 valifying IV
and the second		· · ·

LIJ

(iii)
$$Y = 0$$

 $f \sin x + 2fz = 0$
 $f \sin x = -\frac{1}{\sqrt{z}}$
 $f = \frac{1}{\sqrt{z}}$
 $f = \frac{1$

$$\begin{aligned} \ddot{\zeta}_{ort} + ect' \text{ solution} \\ \chi &= -\frac{\pi}{4} \quad \text{with} \\ explanation \\ \hline \chi &= \frac{7\pi}{4} \quad [\frac{1}{2}] \\ \hline \chi &= -\frac{\pi}{4} \quad [\frac{1}{2}] \\ \hline \chi &= -\frac{\pi}{4} \quad [\frac{1}{2}] \\ \hline \chi &= 0 \\ \hline \chi &= 0$$

Question 6

Expected answers	Marks	Comments
6 (a)		
Sample Space: 8 Objects in a circle Number of ways = $\frac{8!}{8} = 5040$	$\frac{1}{2}$	Sample space
$\frac{\text{Event Space:}}{\text{Case (i): } 3 \text{ Odd numbers together}} \circ \circ \circ \circ \\ \circ \in \mathcal{E} \\ \circ \mathcal{E} \\ \circ \in $		
4 odds, choose $3 \implies 4_{C_3} = 4$ ways, and internally arranged in 3! ways i.e. 24 ways	$\frac{1}{2}$	For 4 choose 3 and arranged in 3! ways
2 evens on either side of the 3 grouped odds gives: 4 choose 2 and arranged in 2! ways i.e. $4_{C_2} \times 2! = 12$ ways	$\frac{1}{2}$	
Now 4 objects (EOOOE and O and E and E) in a circle are arranged in $3! = 6$ ways.		
Hence number of arrangements = $24 \times 12 \times 6 = 1728$ ways	$\frac{1}{2}$	
$\frac{\text{Case (ii): (4 odd numbers together)}}{\overset{\circ}{\underset{\varepsilon \in \varepsilon}{\overset{\circ}{\underset{\varepsilon \in \varepsilon}{\overset{\varepsilon}{\underset{\varepsilon \in \varepsilon}{\overset{\varepsilon}{\underset{\varepsilon}{\underset{\varepsilon \in \varepsilon}{\overset{\varepsilon}{\underset{\varepsilon \in \varepsilon}{\overset{\varepsilon}{\underset{\varepsilon}{\underset{\varepsilon \in \varepsilon}{\overset{\varepsilon}{\underset{\varepsilon}{\underset{\varepsilon \in \varepsilon}{\overset{\varepsilon}{\underset{\varepsilon}{\underset{\varepsilon}{\underset{\varepsilon}{\underset{\varepsilon}{\underset{\varepsilon}{\underset{\varepsilon}{$		
4 odds arranged in $4_{C_4} \times 4! = 24$ ways	$\frac{1}{2}$	
Now the 5 objects (odd group and 4 evens) arranged in a circle in 4! ways = 24 ways	$\frac{1}{2}$	
Hence the number of ways = $24 \times 24 = 576$	$\frac{1}{2}$	
Probability (of at least 3 odds),		
$P = P(3 \text{ odds}) + P(4 \text{ odds}) = \frac{1728 + 576}{5040} = \frac{16}{35}$	$\frac{1}{2}$	$\frac{24}{35}$ max $2\frac{1}{2}$

Expected answers	Marks	Comments
(b) $N = A + (N_0 - A)e^{-kt}$		
(i) At $t = 0$, $N = 1100$ $\therefore 1100 = A + (N_0 - A)e^0$ $\implies N_0 = 1100$	$\frac{1}{2}$	For N_0 value (incl. Working)
Now when $t = 1, N = 1500$ $\Rightarrow 1500 = A + (1100 - A)e^{-k}$ $\Rightarrow e^{-k} = \frac{1500 - A}{1100 - A} \dots (1)$	1	For equation in terms of A and k
Now when $t = 2, N = 1800$ $\Rightarrow 1800 = A + (1100 - A)e^{-2k}$ $\Rightarrow e^{-2k} = \frac{1800 - A}{1100 - A}$ $\Rightarrow (e^{-k})^2 = \frac{1800 - A}{1100 - A} \dots (2)$	1	For equation in terms of A and k
Sub (1) into (2):		
$\left(\frac{1500 - A}{1100 - A}\right)^2 = \frac{1800 - A}{1100 - A}$	$\frac{1}{2}$	For algebra
$ \Rightarrow (1500 - A)^{2} = (1800 - A)(1100 - A) \Rightarrow 11 \times 18 \times 10^{4} - 2900A = 225 \times 10^{4} - 3000A \Rightarrow A = 2700 $	$\frac{1}{2}$	For value of A
Sub $A = 2700$ into (1):		
$e^{-k} = \frac{1500 - 2700}{1100 - 2700} = \frac{3}{4}$ $\implies k = \ln(\frac{4}{3})$	$\frac{1}{2}$	For value of k
(ii) Now $N = 2700 - 1600e^{-\ln\left(\frac{4}{3}\right)t}$		
Maximum will be approached when $t \to \infty \Rightarrow e^{-\ln(\frac{4}{3})t} \to 0 \Rightarrow$ maximum approaches 2700 $t \to t$	1	For maximum predicted value

MATHEMATICS Extension 1 : Ouestion.			
Q7 Suggested Solutions	Marks	Marker's Comments	
$\frac{(1)\ddot{x} = -0.05V^{2}}{dt} = -0.05V^{2}$ $\frac{dv}{dt} = -0.05V^{2}$ $\frac{dv}{dt} = -0.05V^{2}$			
$= -20$ V^{3} $= -20 \int \sqrt{3} dv$			
$= -20 \int V dV$ $= -20 \left[-2v^{2} + C \right]$ $= -20 \left[-2v^{2} + C \right]$	<u> </u>		
when $t=0$, $v=10$ -0=10 $= 20C$		-1 if they forget "C"	
$20C = \frac{1}{10}$ $C = \frac{1}{200}$		0.	
$\frac{10E+1}{10} = \frac{10}{\sqrt{2}}$ $\frac{10E+1}{10} = \frac{10}{\sqrt{2}}$			
$\frac{100}{100000000000000000000000000000000$	(Y ₂)		
$dV = -0.05V^2$			
$\frac{dv}{\sqrt{3}} = \frac{-0.05}{4}$			
$\begin{bmatrix} -1 & -1 \\ 2v^2 & -1 \\ 0 & = -0.05(t-0) \end{bmatrix}$			

1/5

J:\Maths\Suggested Mk solns template_V3.doc

2/5		
MATHEMATICS Extension 1: Question. 7. Cont		
Suggested Solutions	Marks	Marker's Comments
$-\perp$ \perp $=$ -0.05t	(V2)	
2N ² 200		
0.05t + 1 = 5.2	ND	
	()	
106+1 1	AT	
$= 2v^2$	2	
200 22	N	
lot + 1 = 2v	2	
		3
V = 100	(V)	
10++1	L'E	
or method 3		
$-0.05V^{3} = V^{2V}$	(Y)	
	12	
$\frac{d}{dt} = -0.05 v^2$		
$\overline{av} = -0.05v^2$		1
٧ ^٢	(in)	
$2c = \int -20 dv$	2	
) V2-		
x= = +c		
when $x=0$, $v=10$		
$\frac{1}{20} = \frac{10}{10} + C$	10	
· (= -2	(2)	
$x = \frac{29}{2} - 2$		
21111202-01-01-01-01-01-01-01-01-01-01-01-01-01-		
$V = \frac{20}{100}$	(12)	
$\overline{AE} = \frac{29}{\sqrt{12}}$		
	5	
+=1 = + to dx	(12)	
120		
	1	
THE ADE TIONTLY	(42)	
	15	

J:\Maths\Suggested Mk solns template_V3.doc

^{\\}TITAN\StaffHome\$\woh08\JRAH M Fac Admin\Assessment in fo\Suggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question..... Marks **Marker's Comments Suggested Solutions** when E=0 250+1 +C 1/2 C=-2 - " x= 2510++1 -1 off if they forget "C" when they integrated. $\chi = 20$ $\pm = ?$ when Ý2, $20 = 2 \sqrt{10 \pm \pm 1} -$ 22 $= 2 \operatorname{Sidt} + 1$ $|| = \sqrt{10} + 1$ =10f-+1 63 121 = 10-42 12 seconds takes 0.0 method 出 0.05v3 av 0.0512 22 av 0.0643 te doc 0.05 2=0, 1=10 when $0 = -20^{1}$ 2 = -20 - + + + 2=20 now when 20=-20 1-++= = 10 -- x = 21 <u>.</u>

名

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question Marks **Marker's Comments Suggested Solutions** 100 NOW 10t +when 100 100 10 + +121 121 = 10t + 120 = 10. 2 Secon throw the he partic Passes looking -mains to riv -slowing de particle never stops -never changes direction. never stopping retio *If the student's left off one tes they only sorred 1/2 a mark. *Recussing the initial conditions did not score marks as that was the original data, * Writing was awful If the writing couldn't be read marks use deducte

5/-