QUESTION 1 (9 Marks)

(a) A particle is moving in a straight line so that at t seconds it is x metres to the right of the origin O. Its velocity $v \mathrm{~ms}^{-1}$ is described by the equation

$$
v^{2}=24 x-20-4 x^{2}
$$

(i) Show that the particle is moving with Simple Harmonic Motion.
(ii) Find the centre, period and amplitude of the motion.
(b) A boy had 10 coins and 4 identical envelopes. He put 1 coin in the first envelope, 2 coins in the second, 3 coins in the third and 4 coins in the fourth envelope. As he put the envelopes into his bag, one coin fell out of one of the envelopes.
(i) What is the probability that the coin fell out of the fourth envelope? (assume all the coins had an equal chance of falling out)
(ii) He then chose one of the envelopes at random. What is the probability that this envelope had an odd number of coins in it?

QUESTION 2 (9 Marks) Start a new page

(a) A committee of 4 people is to be chosen from a group of 6 men and 5 women. At least one man and one woman must be on the committee.

What is the probability that a committee chosen at random will consist of a majority of men?
(b) The output voltages of two electric circuits are varying according to the differential equations

$$
\frac{d V_{1}}{d t}=-0.12\left(V_{1}-10\right) \text { and } \frac{d V_{2}}{d t}=0.08\left(V_{2}-5\right)
$$

where t is the time in minutes after they are switched on and V_{1} and V_{2} are the output voltages of the circuits respectively in Volts.

The circuits are turned on at the same time.
(i) Show that $V_{1}=10+15 e^{-0.12 t}$ is a solution to the first differential equation.
(ii) Initially $V_{2}=10$. Write a formula for V_{2} as a function of t.
(iii) The two circuits are connected so that their output voltages are added together 3 when they are switched on. When will the minimum total output voltage occur?
(a) The James Ruse Knitwits decide to knit scarves. They have 10 different coloured wools from which to choose. Each scarf may consist of any number of the 10 colours.
(i) How many different wool colour combinations are possible?
(ii) One student chooses a colour combination at random. What is the probability that the student uses 6 colours for his scarf?
(b) The number of hours of daylight during the year at a particular location can be approximately modelled by the Simple Harmonic Motion equations. At this location the longest number of hours of day light is 16 hours and 'shortest' day has 10 hours of daylight.

A particular species of plant will only produce flowers when it receives 14 or more hours of daylight.
(i) Sketch a graph showing the number of Hours of Daylight against
the number of days after the 'shortest' day, for 1 year. (1 year $=365$ days)
Let $H=$ Hours of Daylight and $t=$ number of days after the 'shortest' day.
(ii) Write the equation for the graph in the form $H=A-B \cos \left(\frac{2 \pi t}{365}\right)$, where A and B are constants.
(iii) How many days of the year is the plant expected to have flowers on it?

QUESTION 4 (9 Marks) Start a new page

A particle is projected upwards with a velocity of $40 \mathrm{~ms}^{-1}$ at an angle of 60° to the horizontal from a point 100 metres above ground level.

You many assume the projectile motion equations.

$$
x=V t \cos \alpha \text { and } y=V t \sin \alpha-\frac{1}{2} \mathrm{gt}^{2}
$$

(use $g=10 \mathrm{~ms}^{-2}$ as the acceleration due to gravity)
(i) Calculate the time taken to reach the highest point of the particle's trajectory.
(ii) What is the maximum height above the ground reached by the particle?
(iii) Find the exact time that the particle is in the air.
(iv) How fast is the particle travelling as it hits the ground?

QUESTION 5 (9 Marks) Start a new page

A particle is released from rest at a position $\frac{5 \pi}{4}$ metres to the right of the origin and travels in a straight line. Its acceleration is described by the equation

$$
\frac{d^{2} x}{d t^{2}}=2 \cos x
$$

where x is the displacement in metres from the origin O and t is the time in seconds.
(i) In which direction will the particle first move? Justify your answer.
(ii) Show that its velocity is given by $v^{2}=4 \sin x+2 \sqrt{2}$.
(iii) Where is the particle stationary? Explain your answer.
(iv) Is the particle's motion Simple Harmonic? Justify your answer.

QUESTION 6 (9 Marks) Start a new page

(a) The numbers 1, 2, 3, 4, 5, 6, 7, 8 are arranged in a circle. What is the probability that at least 3 odd numbers are together?
(b) A new species of bird was introduced onto an island. To study the spread of the species across the island, scientists counted the number of nests (N) each year and determined that the number of nests could be calculated by the using the equation

$$
N=A+\left(N_{0}-A\right) e^{-k t}
$$

where N_{0}, A and k are constants and t is the number of years after 1 January 2009.

The following table shows the scientists' results for three years.

Date	1 January 2009	1 January 2010	1 January 2011
Number of Nests	1100	1500	1800

(i) Calculate the values of N_{0}, A and k.
(ii) What is the predicted maximum number of nests?

The acceleration of a particle moving in a straight line is given by

$$
\frac{d^{2} x}{d t^{2}}=-0.05 v^{3}
$$

where x is the displacement in metres from the origin O and v metres per second is the velocity of the particle at time t seconds.

When $t=0$ the particle passes the origin with a velocity of $10 \mathrm{~ms}^{-1}$.
(i) Show that $v^{2}=\frac{100}{10 t+1}$
(ii) Find the time for particle to travel 20 metres?
(iii) Briefly describe the motion of the particle.

END OF EXAMINATION

ai) $\ddot{x}=\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=\frac{1}{2}[24-8 x]=12-4 x$
$\dot{x}=-2^{2}(x-3)$ which is in the form of $\dddot{x}=-n^{2}(x-b)$ where $n=2$

$$
\therefore b=3
$$

ii) C.O.M $x=3$

$$
\text { Period }=\frac{2 \pi}{2}=\pi \sec
$$

amplitude $=$?

$$
\begin{aligned}
& 4 x^{2}-24 x+20=0 \\
& x^{2}-6 x+5=0 \\
& (x-5)(x-1)=0 \quad \therefore x=5 \text { or } 1
\end{aligned}
$$

$$
\text { mplitane }=\frac{5-i}{2}=2 i n
$$

$$
b(i) p\left(4^{\text {th }} \text { envelip }\right)=\frac{4}{10}=\frac{2}{5}
$$

ii) $P($ odd envelop $)$

$$
\begin{aligned}
= & \frac{1}{4} \times \frac{9}{10}+(\text { envelop } / \text { not chosen }) \\
& \frac{1}{4} \times \frac{7}{10}+\text { E } 2 \text { chores } \\
& \frac{1}{4} \times \frac{7}{10}+E 3 \text { not chosen } \\
& \frac{1}{4} \times \frac{4}{10} \\
= & \left(\frac{1}{20}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \\
& \frac{1}{10} \times \frac{1}{4}=\frac{1}{40} \text { (If E/ fulls au, } \\
& \text { call E3 odd) } \\
& +\frac{2}{10} \times \frac{3}{4}=\frac{6}{40} \text { (E2 fowls out } \\
& E_{1}, E_{2}, E_{3} \text { ora) } \\
& +\frac{3}{10} \times \frac{1}{4}=\frac{3}{40} \quad(E 3 \text { fold out } \\
& +\frac{4}{10} \times \frac{3}{4}=\frac{12}{40} \quad\left(E_{E}, \text { fall ant } E_{E 3}\right. \text { odd) } \\
& =\left(\frac{11}{20}\right.
\end{aligned}
$$

Lots of studats wite

$$
\ddot{x}=-4(x-3) \quad-\frac{1}{2} m
$$

forget unit $-\frac{1}{2} m$ must define T, a -in

Show $\frac{1}{4}$ through out $\frac{1}{2} \mathrm{~m}$ other fraction $\frac{1}{2} m$ each final answer $\frac{11}{20} \frac{1}{2} m$

She $\frac{4}{4}, \frac{3}{4}$ throghont $\frac{1}{2} m$
$10, \frac{2}{10}, \frac{3}{10}, \frac{4}{10} 1 \mathrm{~m}$ same in is interpret question answer $\frac{1}{2} \frac{1}{2}$

YI2 MATH EXT 1. ASSESSMENT TASK 3 TERM 2, 2011

MATHEMATICS Extension 1 : Question.. 2
Suggested Solutions \quad Marks

Marker's Comments
(Q) A comm, tee of 4 from 6 M and 5 W with eat lecest on the connectree. [: condition del $]$
Ceres for comm.

$$
M(6) \quad W(5)
$$

No of wees

$$
{ }^{6} c_{3} \times{ }^{5} c_{2}=100
$$

$$
{ }^{6} C_{2} \times{ }^{3} C_{2}=150
$$

(b)
(1) RTS $V_{2}=10+15 e \quad d t$

$$
\text { ie } \frac{d t}{d V_{1}}=-0.12\left(V_{1}-10\right) \quad \cos V_{1}=10+15 e^{-0.12 t}=v_{1}-10
$$

this is act wally the converse of the Q. eked! woe given!
(ii)

$$
\begin{aligned}
\frac{d v_{2}}{d t} & =0.08\left(v_{2}-5\right) \\
v_{2} & =5+B e^{0.0 n t}
\end{aligned}
$$

as $D E: S O f$ the
bud $t=0 \quad V_{2}=10$
$10 \quad 10=5+\beta$

$$
\therefore B=5
$$

$$
\because \cdot V_{2}=5+5 e^{0.0 \varepsilon t}
$$

receson
scamp form cos ci)
$\frac{1}{2}$ For $V_{2}=5+\ldots$
$\frac{1}{2}$ For $e^{0.08 t}$
$\frac{1}{2}$ For $B=5$
sole:- If done $b y$ integredton (not in ppogreeu/syllebus) send a lack of absolute yoack-ts $t 0 \mathrm{q}=4$ to $V_{2}=5 t 5 e^{0.0}$ et
cen t-essen to remeare $-\frac{1}{2} x k$.

IITITANIStaffHome\$lmondraH M Fac Adm in UAssessment in folSuggested Mk solis template_V4_half Ls.doc

$$
\begin{aligned}
& \left.\frac{d V_{1}}{d t}=\frac{k H z}{15}(-0.12) e^{-0 . t 2 t} \right\rvert\,-0.12\left(V_{1}-10\right)=-0.0 \text { Lb }(10 t
\end{aligned}
$$

$$
\begin{aligned}
& =-L \cdot 8 e, L+S=R u \\
& \text {-r }{ }^{2} \text { out } 5=R 4 t
\end{aligned}
$$

$$
\begin{aligned}
& { }^{6} C_{1} x^{5} C_{0}=60 \\
& n(E=\text { med } M)=n\left(E=(3,1)={ }^{2}\right)=C_{3} x^{5} C_{1}=100 \\
& n(E=\text { med } M)=n\left(E=(3,1)={ }^{2}\right)=C_{3} x^{5} C_{1}=100 \\
& \rightarrow P(E)=\frac{00}{310}=\frac{00}{31}
\end{aligned}
$$

MATHEMATICS Extension 1 : Question. 2.

Suggested Solutions

$$
\text { (b)(iii) Let } \begin{aligned}
V & =v_{1}+V_{2} \\
\text { i.e } v & =15+5 e^{0.08 t}+15 e^{-0.12 t} ;
\end{aligned}
$$

$$
\frac{d V}{d t}=0.4 e^{0.08 t}-1.8 e-0.12 t
$$

* For $p o s$ sible max (min velues of V bo oceor dV $=0$

$$
V=30 \cdot 209 \cdots
$$

TEST uceture

$$
\frac{d^{2} v}{d t^{2}}=0.032 e^{0.08 t}+0.21 t e e^{0.0}
$$

\therefore ce Relexive uin tP eet $t=7.52 \ldots$
\qquad
As V is coutinuous end ther \rightarrow ceterno otha T ts fort $\rightarrow 0$ $0+h e \alpha b s o l u t e n$ nin $0<c$ ors when $t=15$ Lums le. the frue is 7.52 neructes (2 d (p)
Nole: If $A \mapsto D 2$ cerves say $y_{1}=5 e^{0.00 t}$
\qquad

$\frac{1}{2}$ For justifying cabs ruin cet $t=5 \ln 4.5$

$$
\begin{aligned}
& 0.2 t=1 n 4.5 \\
& =\frac{\ln 45}{0 \cdot 2}=5 \ln 4 \cdot 5=
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 0.4 e^{0.08 t}-1.8 e^{-0.1 s t}=0 \\
& 10 \quad 0.4 e^{0.08 t}=1.8 e^{-0.12 t}=\frac{1.8}{e^{0.12 t}} \\
& \therefore \quad e^{0.08 t} k e^{0 . t 2 t}=\frac{1-8}{0.4}=\frac{9}{2}=4-5 \\
& e^{0-20 t}=4 \cdot 5
\end{aligned}
$$

MATHEMATICS Extension 1 : Question 3.

Suggested Solutions
a) Each colour either used or not used 2° Rule out case when no color doss 1

$$
\therefore 2^{10}-1=1023
$$

ii) Different way p of choosing 6 is ${ }^{10} \mathrm{C}_{6}$

$$
\therefore p(6 \text { color })=\frac{{ }^{10} C_{6}}{1023}=\frac{210}{1023}=\frac{70}{341}
$$

ii) liven $H=A-B \cos \frac{2 \pi t}{365}$

She $t=0, H=10 \Rightarrow 10=A-B$
The $t=182.5, H=16 \Rightarrow 16=A+B$
These once to $A=13, B=3$

$$
\therefore \quad H=13-3 \Leftrightarrow \frac{2 \pi t}{365}
$$

iii) Find range of t so that $H \geqslant 14$

$$
\begin{gathered}
13-3 \cos \frac{2 \pi t}{365} \geqslant 1 \\
\cos \frac{2 \pi t}{365} \leqslant-\frac{1}{3}
\end{gathered}
$$

Fins two solution of $\cos \theta=-1 / 3$ are 1.9106 and $2 \pi-1.9106$

$$
\therefore \| \leqslant t \leqslant 254
$$

Since froth end dap flower, at flower or 144 dane

Marker's Comments

$\ldots \times$
$\cdots \times{ }^{2}$
$\cdots \times \cdots+\cdots$
\qquad
\qquad
\qquad
\qquad
\qquad
$1 / 2$ for sharpe
Y/ for prints Y/2 for amplitude y. for centre (implied)
\qquad
\qquad
\qquad
\qquad

$\xrightarrow[\square]{\square}+\square \times-$
\qquad
\qquad
\qquad
($1 / 2$ end)
\qquad
$1 / 2$ for equation

1. for general form or implied equi-rdet
II for each fine
$\square \square$
Man

$\cdots+\infty+\infty$

J:MathsiSuggested Mk solns template_V3_all Ls.doc

Suggested Solutions

(i) highest point is shan $y=0$

$$
\begin{aligned}
& y=v \sin \alpha-\frac{1}{2} t^{2} \\
& y=v \sin \alpha-g t \\
& 0=40 \sin 60^{\circ}-10 t \\
& t=\frac{40}{0} \times \frac{\sqrt{3}}{2} \\
& t=2 \sqrt{3} \operatorname{sen} \sin d s
\end{aligned}
$$

\therefore Tron taken is $2 \sqrt{3}$ seconds
(ii) $y=v t S=a-12 g t^{2}+100$

$$
=40 \times 2 \sqrt{3} \times \frac{\sqrt{3}}{2}-\frac{1}{2} \times 10 \times(2 \sqrt{3})^{2}
$$

$$
=120-5 \times 4 \times 3+100
$$

$$
y=160
$$

\therefore Highest pent is 1600 above the ground
(ii) Particle strikes the gresund when $y=0$

$$
\begin{aligned}
& \beta=v+5 m \alpha-\frac{1}{2} g+2+100 \\
& =40 \times \frac{\sqrt{3}}{2} t-\frac{1}{2} \times 10 x t^{2}+100 \\
& 0=-5 t^{2}+40 \sqrt{3} t+100 \\
& \therefore \quad 5 t^{2}-20 \sqrt{3} t-100^{2}=0 \\
& t=\frac{30 \sqrt{3} \pm \sqrt{12000+4(5)(100)}}{10} \\
& =\frac{20 \sqrt{3}+\sqrt{3200}}{10} \\
& =\frac{20 \sqrt{3}+40 \sqrt{2}}{10} \\
& \text { time }=(2 \sqrt{3}+4 \sqrt{2}) \text { seconds } a s t>0 \\
& \text { (ir) } x=40 \cos 06=40 \times \frac{1}{2}=20 \\
& \bar{y}=V S_{n} \alpha-g^{t}=40 \times \sqrt{3}-10 \times(2 \sqrt{3}+4 \sqrt{2}) \\
& =20 \sqrt{3}-20 \sqrt{3}-40 \sqrt{2} \\
& \text { pod }=|V|=\sqrt{x^{2}+y^{2}} \text { as speed }>0 \\
& |V|=\sqrt{400+1600 \times 2} \\
& =\sqrt{3600} \\
& =60 \\
& \therefore S \text { peed is } 60 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$ for no units

$\frac{1}{2}$ mask only for 60 m

On answer of $4 \sqrt{3} \mathrm{~s}$ scored a max. of 1 mark as qu. was simplified.

$$
9.12 \ldots
$$

Dermal approx. lost $\frac{1}{2}$ mark
$\bar{x}=20 \frac{1}{2}$ mark $\dot{y}=-40 \sqrt{2}$ i mark

- $\frac{1}{2}$ for not qualifying $|V|$

IICALLISTOIStaffHome\$1WOH\RAH M Fac Admin\Assessment infolSuggested Mk solns template_V4_half Ls.doc

Question (5)

(i) $\ddot{x}=2 \operatorname{cog} x$.

When $x=5 \pi / 4, \pi=2 \cos 5 \pi / 4$
1.e $\quad \ddot{x}=-2 / \sqrt{2}=-\sqrt{2}$

$$
<0
$$

Also, when $x=5 \pi / 4$

$$
\therefore \text { particle mores }
$$

to the eft
(ii) $\frac{d}{d x}\left(\frac{1}{2} r^{2}\right)=260 n$

$$
\frac{1}{2} v^{2}=2 \sin x+c
$$

When $x=\frac{5 \pi}{4}, v=0$.

$$
0=2(-1 / \sqrt{2})+c
$$

$$
\Longrightarrow c=\sqrt{2} \text {. }
$$

$$
\therefore \quad \begin{aligned}
\frac{1}{2} r^{2} & =2 \sin x+\sqrt{2} \\
r^{2} & =4 \sin x+2 \sqrt{2} .
\end{aligned}
$$

$\vec{x}<0$
$(\ddot{x}=-\sqrt{2})$
$\dot{x}=0$$\quad[1]$
when $x=\frac{5 \pi}{4}$
$[1 / 2]$
mores to
the left

Correct form of $D_{0} E$ and lutegration
$[1]$
$C=\sqrt{2}$
$C o r r e c t$ expression for r
$[1]$

viii) $r=0$

$$
4 \sin x+2 \sqrt{2}=0
$$

$$
\therefore \quad \sin x=-\frac{1}{\sqrt{2}}
$$

- $B u+x \neq \frac{7 \pi}{4}$ since the particle initially mores from, $x=\frac{5 \pi}{4}$ coutinumig moving to the left. lee $x=-\frac{\pi}{4}$.

$$
\begin{aligned}
& x=n \pi+(-1)^{n}\left(\frac{5 \pi}{4}\right)^{n} * \\
& \text { of } x=n \pi+(-1)^{n}\left(-\frac{\pi}{4}\right)^{n} \\
& \left(n \in \mathbb{Z}^{+}\right)
\end{aligned}
$$

- $r=0 \quad w h \operatorname{en} x=-\frac{\pi}{4}$
$w \operatorname{li} \operatorname{en} x=-\frac{\pi}{4}, \ddot{x}>0$.
\Rightarrow the particle mores to the right and stops again at $x=\frac{5 \pi}{4}$.
- Motion continues between $x=-\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$ ONLY.
(ir) Motion is mot SHM

$$
\text { as } \quad \ddot{x}=\left\{\begin{array}{l}
n^{2}(x-b) \\
n^{2} x
\end{array}\right.
$$

$$
\because \quad x=k \cos x, k=2 .
$$

"Correct" solution $x=-\frac{\pi}{4}$ with explanation

$$
x=\frac{7 \pi}{4}
$$

$$
x=-\frac{\pi}{4}\left\{\begin{array}{l}
\dot{x}=0 \tag{1}\\
\dot{x}>0
\end{array}\right.
$$

Explanation of the motion continues between 2 places

No With

Expected answers	Marks	Comments
6 (a)		
Sample Space:		
8 Objects in a circle	1	Sample space
Number of ways $=\frac{81}{8}=5040$	$\overline{2}$	
Event Space:		
Case (i): 3 Odd numbers together $\begin{aligned} & 0^{0} 0 \\ & O_{E E} E \end{aligned}$		
4 odds, choose $3 \Rightarrow 4_{C_{3}}=4$ ways, and internally arranged in 3! ways i.e. 24 ways	$\frac{1}{2}$	For 4 choose 3 and arranged in 3 ! ways
2 evens on either side of the 3 grouped odds gives: 4 choose 2 and arranged in 2 ! ways i.e. $4_{C_{2}} \times 2!=12$ ways	$\frac{1}{2}$	
Now 4 objects (EOOOE and O and E and E) in a circle are arranged in $3!=6$ ways.		
Hence number of arrangements $=24 \times 12 \times 6=1728$ ways	$\frac{1}{2}$	
Case (ii): (4 odd numbers together) $\begin{aligned} & 0^{0} O_{E} \\ & { }_{E}{ }_{E} \end{aligned}$		
4 odds arranged in $4_{C_{4}} \times 4!=24$ ways	$\frac{1}{2}$	
Now the 5 objects (odd group and 4 evens) arranged in a circle in 4! ways $=24$ ways	$\frac{1}{2}$	
Hence the number of ways $=24 \times 24=576$	$\frac{1}{2}$	
Probability (of at least 3 odds),		
$P=P(3 \text { odds })+P(4 \text { odds })=\frac{1728+576}{5040}=\frac{16}{35}$	$\frac{1}{2}$	$\frac{24}{35} \max 2 \frac{1}{2}$

	Expected answers
(b) $N=A+\left(N_{0}-A\right) e^{-k t}$	
(i) \quad At $t=0, N=1100$	
$\therefore 1100=A+\left(N_{0}-A\right) e^{0}$	
$\Rightarrow N_{0}=1100$	

Now when $t=1, N=1500$

$$
\begin{gather*}
\Rightarrow 1500=A+(1100-A) e^{-k} \\
\Rightarrow e^{-k}=\frac{1500-A}{1100-A} \quad \ldots \text { (1) } \tag{1}
\end{gather*}
$$

Now when $t=2, N=1800$

$$
\begin{align*}
& \Rightarrow 1800=A+(1100-A) e^{-2 k} \\
& \Rightarrow e^{-2 k}=\frac{1800-A}{1100-A} \\
& \Rightarrow\left(e^{-k}\right)^{2}=\frac{1800-A}{1100-A} \quad \ldots(2) \tag{2}
\end{align*}
$$

Sub (1) into (2):

$$
\left(\frac{1500-A}{1100-A}\right)^{2}=\frac{1800-A}{1100-A}
$$

$\Rightarrow(1500-A)^{2}=(1800-A)(1100-A)$
$\Rightarrow 11 \times 18 \times 10^{4}-2900 A=225 \times 10^{4}-3000 A$

$$
\Rightarrow A=2700
$$

Sub $A=2700$ into (1):

$$
\begin{aligned}
e^{-k}=\frac{1500-2700}{1100-2700} & =\frac{3}{4} \\
\Rightarrow k & =\ln \left(\frac{4}{3}\right)
\end{aligned}
$$

(ii) Now $N=2700-1600 e^{-\ln \left(\frac{4}{3}\right) t}$

Maximum will be approached when $t \rightarrow \infty \Rightarrow e^{-\ln \left(\frac{4}{3}\right) t} \rightarrow 0 \Rightarrow$ maximum approaches 2700

For N_{0} value (incl. Working)

For equation in terms of A and k

1 For equation in terms of A and k

For algebra

For value of A

For value of k

For maximum predicted value

$2 / 5$

$$
3 / 5
$$

MATHEMATICS Extension 1 : Question.. 7 ...continuad.

VITIANIStaffHomeStwoh08\JRAH M Fac Adm in \Assessment in folSuggested Mk solns template_V4_half Ls.doc
$4 / 5$

MATHEMATICS Extension 1 : Question........

\ICALLISTOUStaffHomeSIWOHVRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question.......

Suggested Solutions	Marks

Marker's Comments

$$
\text { Tow } \quad v^{2}=\frac{10 c}{10 t+1}
$$

When $v=\frac{0}{1 t}, t=$ で?

$$
\frac{100}{121}=\frac{100}{10 t+1}
$$

$$
\mid 21=10 t+1
$$

$$
120=10 t
$$

$$
t=12
$$

: tine 1 s 12 seconds.
(iii) The proticle passes throng the crigh 10×15 wo $t=0$ It is
 travelling to the rapt, The particle
continues $\Delta \infty$ move to the right slowing down but never stopping or changing direction
\qquad
\ICALLISTO\StaffHom e\$\WOH\JRAH M Fac Admin\Assessment infolSuggested Mk solis template_V4_half Ls.doc

