3

Total marks (36) Attempt questions 1 – 3 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Ques	stion 1	(12 marks) Use a SEPARATE writing booklet	Marks
(a)	Consi	ider the expansion of $\left(3x^2 - \frac{1}{x}\right)^9$.	
	(i)	How many terms are there in this expansion?	1
	(ii)	Find the constant term in this expansion.	3

(b) By equating the coefficients of x^5 on both sides of the identity

$$(1+x)^{4} (1+x)^{4} = (1+x)^{8}$$

prove that ${}^{4}C_{0} \times {}^{4}C_{1} + {}^{4}C_{1} \times {}^{4}C_{2} + {}^{4}C_{2} \times {}^{4}C_{3} + {}^{4}C_{3} \times {}^{4}C_{4} = \frac{8!}{3! \times 5!}$

(c) Using the expansion of $(1+x)^n$ prove:

(i)
$$10^n = \binom{n}{0} + 3^2 \cdot \binom{n}{1} + 3^4 \cdot \binom{n}{2} + \dots + 3^{2n} \cdot \binom{n}{n}$$
 1

(ii) Hence, show that
$$1+3^4 \cdot \binom{n}{2}+3^8 \cdot \binom{n}{4}+\ldots+3^{2n} \cdot \binom{n}{n}=2^{n-1}(5^n+4^n)$$
, where *n* is an even integer.

Question 2 (12 marks)Use a SEPARATE writing bookletMarks

(a) (i) Find the linear factors of $6 + 5x - 2x^2 - x^3$. 2

(ii) Find the values of x for which
$$6 + 5x - 2x^2 - x^3 > 0$$
.

(b) The polynomial $P(x) = 2x^3 + ax^2 + bx + 6$ has (x - 1) as a factor and leaves a remainder of -12 when divided by (x + 2). Find the values of *a* and *b*. **3**

(c)

In the diagram above, the curves $y = \frac{k^2}{x}$ and y = x(k - x), where k > 0, touch at the point *P* and intersect at the point *Q*.

(i) Explain why the equation $x^3 - kx^2 + k^2 = 0$ has real roots α , α , and β for some $\alpha \neq \beta$? 2

3

(ii) Find the exact values of k, α and β .

Marks

A frog jumps with initial velocity v m/s at an angle of projection α and its path traces a parabolic arc as shown above. The frog's horizontal displacement from the origin, t seconds after jumping is given by the equation $x = vt \cos \alpha$ [Do not prove this]. The frog's vertical displacement from the origin, t seconds

after jumping is given by the equation $y = vt \sin \alpha - \frac{1}{2}gt^2$ [Do not prove this].

(i) Show that the frog lands after
$$\frac{2v\sin\alpha}{g}$$
 seconds. 2

(ii) Show that the frog's range is
$$\frac{v^2 \sin 2\alpha}{g}$$
 metres. 2

(iii) Show that the frog's maximum height is
$$\frac{v^2 \sin^2 \alpha}{2g}$$
 metres. 2

- (iv) Show that the ratio of the frog's maximum height to range is $\frac{\tan \alpha}{4}$. 2
- (v) Let α_{max} be the angle the frog jumps at to ensure maximum range. Find the ratio of the frog's maximum height to its range in this case. 1

(vi) Let
$$g = 10m/s^2$$
 and $v = \sqrt{85} m/s$.
Let α_{equal} be the angle where the frog's maximum height equals its range.
At this angle, the frog needs a 40cm gap to squeeze between a pole and a freeway.
The top of the pole is the focus of the parabola and the freeway is the directrix.
Can the frog squeeze through? 3

End of Paper

STANDARD INTEGRALS

 $\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x , \qquad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \qquad a \neq 0$ $\int \cos ax \, dx \qquad = \qquad \frac{1}{a} \sin ax, \qquad a \neq 0$ $\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + x^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

Note $\ln x = \log_e x$, x > 0

Ext.1 Ass3 2011 Q1 (a) (1) 10 terms q(ii) $(3x^2 - \frac{1}{x})^q = \sum_{k=0}^{1} (3x^2)^k (-\frac{1}{x})^{q-k} q_k$ $= \sum_{k=1}^{n} {}^{q}C_{k} {}^{3k} {}^{2k} {}^{(-1)}{}^{9-k} {}^{2k} {}^{k-9}$ $= \sum_{k=0}^{k=0} {}^{q} C_{k} (-1)^{q-k} 3^{k} x^{3k-q}$ for the constant term : 3K-9=0 : k=3: coefficient = $(-1)^{6} {}^{9} (3 . 3^{3})$ (b) LHS = $({}^{4}C_{6} + {}^{4}C_{1}x + {}^{4}C_{2}x^{2} + {}^{4}C_{3}x^{3} + {}^{4}C_{4}x^{4})^{2}$ $\therefore \text{ (o-eff. of } x^5 = {}^{4}C_1 \times {}^{4}C_4 + {}^{4}C_2 \times {}^{4}C_3 + {}^{4}C_3 \times {}^{4}C_2 - {}^{4}C_4 \times {}^{4}C_1$ $= {}^{4}C_{1} \times {}^{4}C_{0} + {}^{4}C_{2} \times {}^{4}C_{1} + {}^{4}C_{2} \times {}^{4}C_{3} + {}^{4}C_{3} \times {}^{4}C_{4}$ $(since n_r = n_{r-r})$ $RHS = \sum_{k=0}^{8} x^{k} \cdot {}^{8}C_{k}$ $co-eff. of x^{5} = {}^{8}C_{5}$ = 8! ~7 = 8!3!5! $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-$

(c) (i) $(1+\chi)^{n} = {\binom{n}{0}} + {\binom{n}{1}}\chi + {\binom{n}{2}}\chi^{2} + \dots + {\binom{n}{n}}\chi^{n}$ $let x = 9 = 3^2$ $10^{n} = {\binom{n}{1}} + {\binom{n}{1}} + {\binom{n}{2}} + {\binom{n}{2$ (ii) let $x = -9 = -3^2$ $(-8)^{n} = {\binom{n}{b}} - {\binom{n}{1}} 3^{2} + {\binom{n}{1}} 3^{4} - \dots + {\binom{n}{n}} 3^{2n}$ (2) but since n is even then $(-8)^h = 8^h$ adding (1) and (2): $2\binom{n}{2} + 2\binom{n}{2}3^4 + \dots + 2\binom{n}{n}3^{2n} = 10^n + 8^n$ $\frac{n}{n} + \binom{n}{2} 3^4 + \dots + \binom{n}{n} 3^{2n} = 10^n + 8^n$ <u>2ⁿ.5ⁿ + 2ⁿ.4ⁿ</u> $= 2^{n-1} \cdot 5^{n} + 2^{n-1} \cdot 4^{n}$ $= 2^{n-1} \cdot (5^{n} + 4^{n}) \quad \checkmark$

Durion Q2 (a) (i) $P(a) = 6 + 5\pi - 2\pi^2 - \pi^3$ P(-1) = 6 - 5 - 2 + 1 = 0 $\frac{(n+i)}{-x^2} \xrightarrow{n} \frac{\pi}{76} \xrightarrow{n} \frac{\pi}{6} \xrightarrow{n} \frac{\pi}{76} \xrightarrow{n} \frac{\pi}{76}$ $x + i \quad \overline{)} - n^3 - 2n^2 + 5n + 6 = (x + 3)(2 - x).$ $\frac{-\chi^{3}-\chi^{2}}{-\chi^{2}+\varsigma_{\chi}}$ $-\frac{n}{6n+6}$ 6n + 6 P(n) = (3 + x)(2 + x)(x+i). $= (\chi + I)(\chi + 3)(2 - \chi).$ I ank for costinued perforisation _(11) I mk for critical value method a fraph. ·- P(x)>0 -1 < x < Z , 4 2 <-3 \sim Inte for mayles $P(x) = 2n^3 + an^2 + bn + 6$ (6) P(1) = 2 + a + 6 + 6 Ink a+6= -8 ... (7) a+ 6+8. P(-2) = -16 + 24a - 26 + 624a - 26 -10 Ξ · 4a - 26 - 10 = - 12 1. Lab 4a - 2b = - 2 2a - 6 = -1 - 2 [mk. · 2a = -9 a = -23 - 3. b = -5Inte both correct. BAZZ.

(i) $y = \frac{1c^2}{\pi}$ y = 2k(k-n). y= xk - n2 $n(c - n^2) = \underline{k}^2$ (i) 4 $\frac{\chi^2}{\chi^2 k - \chi^3} = k^2$ then $x^3 - \hbar x^2 + 1c^2 = 0$. ie. the interaction of the two curves. double root at 2007 P and liveau not at Q herce a, a, b are the voots. $\alpha^{2}\beta = -k^{2}...(1)$ cii) 4 AB ZEL $\alpha^{-}\beta^{-} = -k \qquad (1)$ $2\alpha^{-} + \beta^{-} = k \qquad (2)$ and $\alpha^2 + 2\alpha\beta = 0.$ and α (α + 2 β) = 0 ... (3) if x = 0 the B is the only solution so X 7 O. $-4\beta + \beta = k$ $-3\beta = 1c$ $\alpha = - Z\beta.$ Rakt & $\beta = -\frac{k}{3}$ 1 - 33 Fle よう $x = \frac{2k}{3}$ M 2/2 Now $x^2\beta = k^2$ $\frac{4k^2}{9} \cdot \left(\frac{-k}{3}\right) = k^2$ 4 k³ / 155 k² / (4)- F :. X= 4K3 = x7/c2 (4k2 - 87 $k = -\frac{27}{v}$. $\beta = 4 \frac{9}{4}$

- (i) Froz lands when y= 0 1. Utsing - 2012=0 V $t \left(v \sin a - \frac{1}{2} 3 t \right) = 0$ t=0 or $t=\frac{2Ysind}{\delta}$: Frog lands when t= zrsind
- (ii) when $t = \frac{245 \text{ in } d}{8}$

$$d = V \pm \cos d$$

$$= V \cos a \left(\frac{2 \sqrt{\sin a}}{\delta} \right) / \frac{1}{\delta}$$

$$= \frac{\sqrt{2}}{\delta} \left(2 \sin a \cos x \right)$$

$$= \frac{\sqrt{2} \sin 2a}{\delta} / \frac{1}{\delta}$$

(iii) maximum height occus when y = 0

$$\dot{y} = Vsind - \delta t$$

$$= \delta \quad \text{when } t = \frac{Vsind}{\delta} \sqrt{\delta}$$

$$b = Vtsind - \frac{1}{2}\delta t^{2}$$

$$= \frac{V^{2}sin^{2}d}{\delta} - \frac{V^{2}sin^{2}d}{2\delta}$$

$$= \frac{V^{2}sin^{2}d}{2\delta} \sqrt{\delta}$$

$$\frac{height}{range} = \frac{\sqrt{2}\sin^2 \alpha}{28} \times \frac{\sqrt{2}}{\sqrt{2}\sin^2 \alpha}$$

$$= \frac{\sin^2 \alpha}{4\sin^2 \alpha}$$

$$= \frac{tan\alpha}{4} \sqrt{\frac{1}{4}}$$

(V) maximum range occurs when sinze =)

1.e. when
$$d = \frac{\pi}{4}$$

 $\frac{heisht}{range} = \frac{1}{4}$

(vi) if maximum height = range then tand = 4

$$x = Ytcora : t = \frac{\pi}{Vcosa}$$

$$y = Vtsina - \frac{1}{2}gt^{2}$$

$$= Vsina \left(\frac{\pi}{Vcosa}\right) - \frac{1}{2}s\left(\frac{\pi}{Vcosa}\right)^{2}$$

$$= x + ava - \frac{1}{2}\frac{5x^{2}}{\sqrt{2}}sec^{2}a$$

$$y = 4x - \frac{5x^{2}}{85}x^{17}$$

$$y = 4x - x^{2}$$

$$x^{2} - 4x + 4 = -9 + 4$$

$$(x - z)^{2} = -(9 - 4)$$

$$\therefore Vector (2, 4) focal length \frac{1}{4}$$

$$focus (2, 3^{3}) directrix: 9 = 4^{4}x^{17}$$

$$A distance between focal length and directrix is $\frac{1}{2}$ metre > 40 cm

$$\therefore Fros can squeeze through V$$

$$H(8. Had to get to cqui of faces a
for first mark.$$$$

12