Total marks (36)
Attempt questions 1 - 3
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet
(a) Consider the expansion of $\left(3 x^{2}-\frac{1}{x}\right)^{9}$.
(i) How many terms are there in this expansion?
(ii) Find the constant term in this expansion.
(b) By equating the coefficients of x^{5} on both sides of the identity

$$
(1+x)^{4}(1+x)^{4}=(1+x)^{8}
$$

prove that $\quad{ }^{4} C_{0} \times{ }^{4} C_{1}+{ }^{4} C_{1} \times{ }^{4} C_{2}+{ }^{4} C_{2} \times{ }^{4} C_{3}+{ }^{4} C_{3} \times{ }^{4} C_{4}=\frac{8!}{3!\times 5!}$
(c) Using the expansion of $(1+x)^{n}$ prove:
(i) $\quad 10^{n}=\binom{n}{0}+3^{2} \cdot\binom{n}{1}+3^{4} \cdot\binom{n}{2}+\ldots+3^{2 n} \cdot\binom{n}{n}$
(ii) Hence, show that $1+3^{4} \cdot\binom{n}{2}+3^{8} \cdot\binom{n}{4}+\ldots+3^{2 n} \cdot\binom{n}{n}=2^{n-1}\left(5^{n}+4^{n}\right)$, where n is an even integer.
(a) (i) Find the linear factors of $6+5 x-2 x^{2}-x^{3}$. 2
(ii) Find the values of x for which $6+5 x-2 x^{2}-x^{3}>0$.
(b) The polynomial $P(x)=2 x^{3}+a x^{2}+b x+6$ has $(x-1)$ as a factor and leaves a remainder of -12 when divided by $(x+2)$. Find the values of a and b.
(c)

In the diagram above, the curves $y=\frac{k^{2}}{x}$ and $y=x(k-x)$, where $k>0$, touch at the point P and intersect at the point Q.
(i) Explain why the equation $x^{3}-k x^{2}+k^{2}=0$ has real roots α, α, and β for some $\alpha \neq \beta$?
(ii) Find the exact values of k, α and β.

Question 3 (12 marks) Use a SEPARATE writing booklet

A frog jumps with initial velocity $v \mathrm{~m} / \mathrm{s}$ at an angle of projection α and its path traces a parabolic arc as shown above. The frog's horizontal displacement from the origin, t seconds after jumping is given by the equation $x=v t \cos \alpha$ [Do not prove this]. The frog's vertical displacement from the origin, t seconds after jumping is given by the equation $y=v t \sin \alpha-\frac{1}{2} g t^{2}$ [Do not prove this].
(i) Show that the frog lands after $\frac{2 v \sin \alpha}{g}$ seconds.
(ii) Show that the frog's range is $\frac{v^{2} \sin 2 \alpha}{g}$ metres.
(iii) Show that the frog's maximum height is $\frac{v^{2} \sin ^{2} \alpha}{2 g}$ metres.

2
(iv) Show that the ratio of the frog's maximum height to range is $\frac{\tan \alpha}{4}$.
(v) Let $\alpha_{\text {max }}$ be the angle the frog jumps at to ensure maximum range. Find the ratio of the frog's maximum height to its range in this case.
(vi) Let $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and $v=\sqrt{85} \mathrm{~m} / \mathrm{s}$.

Let $\alpha_{\text {equal }}$ be the angle where the frog's maximum height equals its range.
At this angle, the frog needs a 40 cm gap to squeeze between a pole and a freeway.
The top of the pole is the focus of the parabola and the freeway is the directrix.
Can the frog squeeze through?

End of Paper

STANDARD INTEGRALS

$$
\text { Note } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\quad \ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Ext. 1 Ass 3011
Q1 (a) (i) 10 terms
(ii)

$$
\begin{aligned}
& 10 \text { terms } \\
&\left(3 x^{2}-\frac{1}{x}\right)^{9}=\sum_{k=0}^{9}\left(3 x^{2}\right)^{k}\left(\frac{-1}{x}\right)^{9-k}{ }^{9} C_{k} \\
&=\sum_{k=0}^{9}{ }^{9} C_{k} 3^{k} x^{2 k}(-1)^{9-k} x^{k-9} \\
&=\sum_{k=0}^{9}{ }^{a} C_{k}(-1)^{9-k} 3^{k} x^{3 k-9}
\end{aligned}
$$

for the constant term: $3 k-9=0$

$$
\begin{aligned}
\therefore \text { coefficient } & =(-1)^{k}{ }^{k} C_{3}-3^{3} \\
& =2268
\end{aligned}
$$

(b) LHS $=\left({ }^{4} C_{0}+{ }^{4} C_{1} x+{ }^{4} C_{2} x^{2}+{ }^{4} C_{3} x^{3}+{ }_{4}^{4} x^{4}\right)^{2}$

$$
\begin{aligned}
& \therefore \text { chef of } x^{5}={ }^{4} C_{1} \times{ }^{4} C_{4}+{ }^{4} C_{2} \times{ }_{4}^{4} C_{3}+{ }_{4} C_{3}{ }^{4} C_{2}+{ }^{4} C_{4} \times{ }^{4} C_{1} \\
&={ }^{4} C_{1} \times{ }^{4} C_{0}+{ }^{4} C_{2} \times{ }^{4} C_{1}+{ }^{4} C_{2} \times{ }^{4} C_{3}+{ }^{4} C_{3} \times{ }^{4} C_{4} \\
& \text { RUS }=\sum_{k=0}^{8} x^{k}{ }^{8} C_{k} \\
& \therefore \text { conf of } x^{5}\left.={ }^{8} C_{5} C_{5}={ }^{n} C_{n-r}\right) \\
&=\frac{8!}{(8-5)!5!} \\
&=\frac{8!}{3!5!} \\
& \therefore{ }^{4} C_{0} \times{ }^{4} C_{1}+{ }^{4} C_{1} \times C_{2}+{ }^{4} C_{2} \times{ }^{4} C_{3}+{ }^{4} C_{3} \times{ }^{4} C_{4}=
\end{aligned}
$$

(c) (i) $(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}$
let $x=9=3^{2}$

$$
\begin{equation*}
\therefore \quad 10^{n}=\binom{n}{0}+\binom{n}{1} 3^{2}+\binom{n}{2} 3^{4}+\cdots+\binom{n}{n} 3^{2 n} \tag{1}
\end{equation*}
$$

(ii) let $x=-9=-3^{2}$

$$
\begin{equation*}
\therefore(-8)^{n}=\binom{n}{0}-\binom{n}{1} 3^{2}+\binom{n}{2} 3^{4}-\cdots+\binom{n}{n} 3^{2 n} \tag{2}
\end{equation*}
$$

but since n is even then $(-8)^{n}=8^{n}$ adding (1) and (2)

$$
\begin{aligned}
& 2\binom{n}{0}+2\binom{n}{2} 3^{4}+\ldots+2\binom{n}{n} 3^{2 n}=10^{n}+8^{n} \\
& \therefore\binom{n}{0}+\binom{n}{2} 3^{4}+\cdots+\binom{n}{n} 3^{2 n}=\frac{10^{n}+8^{n}}{2} \\
&=\frac{2^{n} \cdot 5^{n}+2^{n} 4^{n}}{2} \\
&=2^{n-1} \cdot 5^{n}+2^{n-1} 4^{n} \\
&=2^{n-1}\left(5^{n}+4^{n}\right)
\end{aligned}
$$

Blurion
$Q 2$
(a)

$$
\text { (i) } \begin{aligned}
P(x) & =6+5 x-2 x^{2}-x^{3} \\
P(-1) & =6-5-2+1 \\
& =0
\end{aligned}
$$

$\therefore(x+1)$ in a fackor.. 1 mark for fackor then.

$$
\frac{-x^{2}-x+6}{3} \Rightarrow 6-x-x^{2}
$$

$x+1 \sqrt{-x^{3}-2 x^{2}+5 x+6}=(x+3)(2-x)$.

$$
\begin{gathered}
\frac{-x^{3}-x^{2}}{-x^{2}+5 x} \\
\frac{-x-x}{6 x+6} \\
=(3+x)(2+x)(x+1) \\
=(x+1)(x+3)(2-x) .
\end{gathered}
$$

$$
\therefore P(x)=(3+x)(2+x)(x+1) .
$$

for coctimed foctorisatia

mk of citical value \rightarrow methed or sraph.
$\therefore P(x)>0$ of $x<-3$ or $-1<x<2$. lok for males
(b)

$$
\begin{aligned}
& P(x)=2 x^{3}+a x^{2}+b x+6 \\
& P(1)=2+a+b+6 \\
& =a+b+8 \text {. } \\
& P(-2)=-16+4 a-26+6 \\
& =4 a-2 b-10 \\
& \therefore 4 a-2 b-10=-12 \\
& 4 a-2 b=-2 \\
& 2 a-b=-1 \ldots(2) \text { Imk. } \\
& \therefore 3 a=-9 \\
& \begin{aligned}
a & =-\frac{1}{2}-3 . \\
b & =-5 \\
b & =\frac{7}{2} .
\end{aligned} \quad \begin{array}{c}
\text { ink } \\
\text { both correct. }
\end{array}
\end{aligned}
$$

(i) If

$$
x k-x^{2}=\frac{k^{2}}{x}
$$

then

$$
x^{2} k-x^{3}=k^{2}
$$

$$
x^{3}-k x^{2}+k^{2}=0
$$

ie. the intersection of the two curves.
double root at $x=P$ and liver rot at Q hence α, α, β are the roots.
(ii)

$$
\begin{array}{r}
\alpha^{2} \beta=-k^{2} \\
2 \alpha+\beta=k \tag{2}\\
\alpha^{2}+2 \alpha \beta=0
\end{array}
$$

and

NA a
and
and

$$
\alpha(\alpha+2 \beta)=0 \ldots(3)
$$

if $\begin{aligned} \alpha & =0 \text { the } \beta \text { i the only solution so } \\ \alpha & \neq 0\end{aligned}$

$$
\alpha \neq 0
$$

$$
\begin{gathered}
\therefore \alpha=-2 \beta . \\
\therefore \quad-k \beta \neq k
\end{gathered}
$$

$$
B=\frac{k}{\sqrt{3}}
$$

$$
\begin{aligned}
\therefore 4 \beta & +\beta=k \\
-3 \beta & =k \\
\therefore \beta & =-\frac{k}{3} \\
1 \alpha & =\frac{2 k}{3}
\end{aligned}
$$

Now

$$
\begin{aligned}
\therefore \alpha & =-\frac{9}{2} \\
\beta & =\frac{9}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{2} \beta=k^{2} \\
& \therefore \quad \frac{4 k^{2}}{9} \cdot\left(\frac{-k}{3}\right)=k^{2} \\
& \therefore \quad-4 k^{3}=4 c^{2} \\
& \therefore \quad k=\frac{-27}{4} .
\end{aligned}
$$

$(4 k k \in 7)=0$

$$
\therefore \quad \alpha=\frac{125}{4}-\frac{81}{4}
$$

Question three

(i) Frog lands where $y=0$

$$
\therefore v t \sin \alpha-\frac{1}{2} o t^{2}=0
$$

$$
\therefore \quad t\left(v \sin \alpha-\frac{1}{2} 5 t\right)=0
$$

$$
\therefore t=0 \text { or } t=\frac{2 r \sin \alpha}{\delta}
$$

$$
\text { Frog lands when } t=\frac{2 r \sin \alpha}{\delta}
$$

(ii) when $t=\frac{24 \sin \alpha}{8}$

$$
\begin{aligned}
x & =v \cos \alpha \\
& =v \cos \alpha\left(\frac{2 v \sin \alpha}{\delta}\right) v \\
& =\frac{v^{2}}{\delta}(2 \sin \alpha \cos \alpha) \\
& =\frac{v^{2} \sin 2 \alpha}{\delta}
\end{aligned}
$$

(iii) maximum height oecus when $\dot{y}=0$

$$
\begin{aligned}
\dot{y} & =v \sin \alpha-\sigma^{t} \\
& =0 \text { when } t=\frac{v \sin \alpha}{\partial} \\
y & =v t \sin \alpha-\frac{v}{2} g t^{2} \\
& =\frac{v^{2} \sin ^{2} \alpha}{\delta}-\frac{v^{2} \sin ^{2} \alpha}{2 g} \\
& =\frac{v^{2} \sin ^{2} \alpha}{2 g} V
\end{aligned}
$$

(iv) $\frac{\text { height }}{\text { range }}=\frac{x^{2} \sin ^{2} \alpha}{28} \times \frac{g}{y^{2} \sin 2 \alpha}$

$$
\begin{aligned}
& =\frac{\sin ^{2} \alpha}{4 \sin \alpha \cos \alpha} \\
& =\frac{\tan \alpha}{4}
\end{aligned}
$$

(v) maximum range occurs when $\sin 2 \alpha=1$
1.e. when $\alpha=\frac{\pi}{4}$

$$
\therefore \frac{\text { height }}{\text { range }}=\frac{1}{4}
$$

(vi) If maximum height = range then tank: 4

$$
x=r \cos \alpha \quad \therefore t=\frac{x}{v \cos \alpha}
$$

$$
y=x t \sin \alpha-\frac{1}{2} g t^{2}
$$

$$
=v \sin \alpha\left(\frac{x}{v \cos \alpha}\right)-\frac{1}{2} \delta\left(\frac{x}{v \cos \alpha}\right)^{2}
$$

$$
=x \tan \alpha-\frac{1}{2} \frac{5 x^{2}}{y^{2}} \sec ^{2} \alpha
$$

$$
\therefore y=4 x-\frac{5 x^{2}}{85} \times 17
$$

$$
y=4 x-x^{2}
$$

$$
\begin{aligned}
x^{2}-4 x+4 & =-y+4 \\
(x-2)^{2} & =-(y-4)
\end{aligned}
$$

$$
\therefore \text { vertex }(2,4) \text { focal length } \frac{1}{4}
$$

$$
\text { forms }\left(2,3 \frac{3}{4}\right) \text { directrix: } y=4 \frac{1}{4}
$$

\therefore distance between focal length
and direurny is $\frac{1}{2}$ mature $>40 \mathrm{~cm}$
\therefore Frog can squecre through
N.B. Had to get to equ. of parabola
for first mark.

