Total marks 36

Attempt questions 1-3
Answer each question in a SEPARATE writing booklet.

Question 1 (12 Marks) Use a SEPARATE writing booklet
 Marks

(a) If the velocity of a particle is given by $v=\frac{1}{2 t+1} m s^{-1}$ and it is initially at $X=1$, find an expression for the displacement X in terms of t.
(b) A particle undergoes Simple Harmonic Motion about the origin O. Its displacement, x centimetres from the origin at time t seconds, is given by $x=4 \cos \left(2 t+\frac{\pi}{3}\right)$
(i) Express the acceleration as a function of displacement. 1
(ii) Write down the amplitude of the motion. $\mathbf{1}$
(iii) Find the maximum speed and the time at which it first occurs.
(c) The acceleration of an object moving along the x-axis is given by $a=10 x-5 x^{3} \mathrm{~cm} / \mathrm{s}^{2}$. It is released from rest at $x=2$.
(i) If V is the velocity, show that $v^{2}=x^{2}\left(10-2.5 x^{2}\right)$.
(ii) In which direction does the object first move? Show why. 2
(iii) Where does the object next come to rest?

Question 212 Marks Use a SEPARATE writing booklet

(a) A baseball pitcher throws his fastball ball at 40 metres / sec. He releases the ball 1.8 metres above the ground at an angle of 2° above the horizontal and at a distance of 18.4 metres from the batter.

The equations of motion for the ball are: $\ddot{x}=0$ and $\ddot{y}=-10$.
Take the origin to be the ground directly below the point where the pitcher releases the ball.
(i) Using calculus, prove that the coordinates of the ball at time $t \quad 3$ are given by:

$$
x=40 t \cos \left(2^{\circ}\right) \text { and } y=-5 t^{2}+40 t \sin \left(2^{\circ}\right)+1.8
$$

(ii) Find the time it takes for the ball to reach the batter.
(iii) To be a "strike" for a particular batter, the ball must pass the batter between 53 cm and 115 cm above the ground. Was this ball a strike? Show your reasoning clearly.
(iv) Find the angle (to the nearest minute) at which the ball arrives at the batter.
(b) Given the equations of motion of an cannonball fired from the origin with initial speed $V \mathrm{~m} / \mathrm{s}$ at an angle of α° are given by:
$x=V t \cos \alpha$ and $y=-\frac{1}{2} g t^{2}+V t \sin \alpha$,
(i) Show that the Cartesian equation of the path of the object are $\mathbf{2}$ given by $y=-\frac{g x^{2}}{2 V^{2}} \sec ^{2} \alpha+x \tan \alpha$
(ii) Show that the range on level ground is given by $\frac{V^{2}}{g} \sin 2 \alpha$.
(iii) If $V=33 \mathrm{~m} / \mathrm{s}$ and taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$, find the maximum $\quad \mathbf{1}$ distance that the cannonball can be fired.
(a) Find the coefficient of x^{6} in the expansion of $\left(1-2 x^{2}\right)^{5}$
(b) Using the fact that $(1+x)^{4}(1+x)^{9}=(1+x)^{13}$, show that

$$
{ }^{4} C_{0}{ }^{9} C_{4}+{ }^{4} C_{1}{ }^{9} C_{3}+{ }^{4} C_{2}{ }^{9} C_{2}+{ }^{4} C_{3}{ }^{9} C_{1}+{ }^{4} C_{4}{ }^{9} C_{0}={ }^{13} C_{4}
$$

(c) Let $(2+5 x)^{20}=\sum_{k=0}^{20} T_{k}$ where T_{k} is the term in x^{k}.
(i) Show that $\frac{T_{k+1}}{T_{k}}=\frac{100-5 k}{2 k+2} x$
(ii) If $x=\frac{1}{3}$, find the greatest term in factored form.
(d) (i) Use the binomial theorem to obtain an expansion for
$(1+x)^{2 n}+(1-x)^{2 n}$ where n is a positive integer.
(ii) Hence evaluate $1+{ }^{20} C_{2}+{ }^{20} C_{4}+\ldots \ldots .+{ }^{20} C_{20}$.

End of Paper

cueshosu. (:
(a)

$$
\begin{aligned}
& v=\frac{1}{2 t+1} \quad t=0, x=1 \\
& x=\frac{1}{2} \int \frac{2}{2 t+1} d t \\
& x=\frac{1}{2} \operatorname{lx}(2 t+1)+c
\end{aligned}
$$

when $t=0 \quad x=1$

$$
\begin{aligned}
1 & =\frac{1}{2} \ln 1+c \\
c & =1 \\
\therefore \quad x & =\frac{1}{2} \ln (2 t+1)+1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x=4 \cos (2 t+\pi / 3) \\
& \dot{x}=-8 \sin (2 t+\pi / 3) \\
& \ddot{x}=-16 \cos (2 t+\pi / 3)
\end{aligned}
$$

(i) $\ddot{x}=-4 x$
(ii) anep is.... 4.
(ii) max speed is where $\sin (2 c+\pi / 3)=1$. and is $8 \mathrm{~cm} / \mathrm{sec}$
which is when $2 t+\pi / 3=\pi / 2$

$$
\begin{aligned}
2 t & =\pi / 6 \\
t & =\pi / 2 \sec
\end{aligned}
$$

(c.) $\therefore \quad a=10 x-5 x^{3} \quad t=0, v=0, x=2$
(i) $\frac{d \frac{1}{2} v^{2}}{d x}=10 x-5 x^{3}$

If fort utegrate wit x wat wing $\frac{d d^{2}}{d x}$ them no marks.

$$
\frac{1}{2} y^{2}=5 x^{2}-\frac{5}{4} x^{4}+C
$$

when $v=0 \quad x=2$.

$$
\begin{aligned}
0 & =20-20+c \quad \therefore c=0 \\
\therefore \quad \frac{1}{2} v^{2} & =5 x^{2}-\frac{5}{4} x^{4} \\
v^{2} & =10 x^{2}-\frac{5}{2} x^{4}
\end{aligned}
$$

(ii) since initial velocity in zero, direction is determined by accelsat at $t=0 \quad a=10 \times 2-5 \times 2^{3}$. Needs to show clearly $=-20 \mathrm{~cm} / \mathrm{s}^{2}$.

(iii)

$$
v^{2}=x^{2}\left(10-\frac{5}{2} x^{2}\right)
$$

moving left from $x=2$, next skitinary poet is $x=0 . \therefore$
$Q 2$
a) i) $\ddot{x}=0$

$$
\begin{aligned}
& \dot{x}=\int d t \\
&=C \\
& t=0 \quad x=40 \cos 2^{\circ} \\
& x=\int 40 \cos 2^{\circ} d t \\
&= 40 t \cos 2^{\circ}+c \\
& t=0 \quad x=0 \\
& x=40 t \cos 2^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{y}=-10 \\
& \dot{y}=\int-10 d t \\
& \dot{y}=-10 t+c \\
& t=0 \quad \dot{y}=40 \sin 2^{\circ} \\
& \dot{y}=-10 t+40 \sin 2^{\circ} \\
& y=\int-10 t+40 \sin 2^{\circ} d t \\
& =-5 t^{2}+40 t \sin 2^{\circ}+c \\
& t=0 \quad y=1.8 \\
& y=-5 t^{2}+40 t \sin 2^{\circ}+1.8
\end{aligned}
$$

ii)

$$
\begin{aligned}
x & =18.4 \\
18.4 & =40 t \cos 2^{\circ} \\
t & =\frac{18.4}{40 \cos 2^{\circ}} \\
& \approx 0.4602803904 \sec
\end{aligned}
$$

iii) $t=0.4602303900$

$$
\begin{aligned}
y & =-5(0.46)^{2}+40(0.46) \sin 2^{\circ} \\
& +1.8 \\
& =1.38 \mathrm{~m}
\end{aligned}
$$

Since it is greater than 115 cm it is not a strike
IV)

$$
\begin{aligned}
t & =0.46 \\
\dot{x} & =40 \cos 2^{\circ}=39.98 \\
\dot{y} & =-10(0.46)+40 \sin 2^{\circ} \\
& =-3.20
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{3.20}{39.98} \\
\theta & =4^{\circ} 35^{\prime}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& x=V t \cos \alpha(1) \\
& y=-\frac{1}{2} g t^{2}+V t \sin \alpha(2)
\end{aligned}
$$

From (1) $t=\frac{x}{V \cos \alpha} \operatorname{seb}$ in (2)

$$
\begin{aligned}
y & =-\frac{1}{2} g\left(\frac{x}{v \cos \alpha}\right)^{2}+v\left(\frac{x}{v \cos \alpha}\right) \sin \alpha \\
& =-\frac{1}{2} g \frac{x^{2}}{v^{2}} \sec ^{2} \alpha+x \tan \alpha
\end{aligned}
$$

ii) Range $y=0$

$$
\begin{aligned}
& y=0 \\
& \begin{aligned}
y=0 \text { or } \frac{1}{2} \frac{-g x}{2 v^{2}} & \sec ^{2} \alpha+\tan \alpha=0 \\
x & =\frac{2 v^{2} \tan \alpha}{g \sec ^{2} \alpha} \\
& =\frac{v^{2}}{g} 2 \cos ^{2} \alpha \tan \alpha \\
& =\frac{v^{2}}{g} 2 \sin \alpha \cos \alpha \\
& =\frac{v^{2}}{y} \sin 2 \alpha
\end{aligned}
\end{aligned}
$$

iii) Range $=\frac{33^{2}}{10} \times 1 \quad$ Max when $\alpha=\frac{\pi}{4}$

$$
=108.9 \mathrm{~m}
$$

Question 3.

$$
\begin{aligned}
\text { (a) }\left(1-2 x^{2}\right)^{5} & =\sum_{i=0}^{5}{ }^{5} C_{i}\left(-2 x^{2}\right)^{i} \\
& =\sum_{i=0}^{5} C_{i}(-2)^{i} x^{2 i}
\end{aligned}
$$

for ferm in $\dot{x}^{6} \quad 2 i=6$ ici $i=3$.

$$
\begin{aligned}
\therefore \text { weff of } x^{6} & ={ }^{5} c_{3}(-2)^{3} \\
& =-80 .
\end{aligned}
$$

(a)

$$
\begin{aligned}
& (1+x)^{2 n}+(1-x)^{24}=\left({ }^{2 n} C_{0}{ }^{2 n} C_{1} x+C_{2} C^{2 n} x^{2}+\cdots+{ }^{2 n} C_{n} x^{2 n}\right) \\
& (1+x)^{2 n}+(1-x)^{2 n}=2\left({ }^{2 n} C_{0}+{ }^{2 n} C_{1} x+{ }^{2 n} x^{2}+C_{2}-{ }^{2 n} C_{2 n}^{2 n}\right)
\end{aligned}
$$

sub $x=1$ in both side and $n=10$.

$$
\begin{aligned}
& \text { sub } x=1+1)^{20}+0=2\left({ }^{2 n} C_{0}+{ }^{2 n} C_{1}+\cdots+{ }^{2 n} C_{2 n}\right) \\
& 2^{20}=2\left(1+{ }^{20} C_{1}+\cdots+{ }^{20} C_{10}\right) \\
& \therefore 1+{ }^{2 a} C_{2}+{ }^{20} C_{4}+\cdots+{ }^{20} C_{20}=2^{19}
\end{aligned}
$$

(b) $L H S=\left({ }^{4} C_{0}+{ }^{4} C_{1} x+{ }^{4} C_{2} x^{2}+{ }^{4} C_{3} x^{3}+{ }^{4} C_{4} x^{4}\right)\left({ }^{9} C_{0}+{ }^{9} C_{1} x+{ }^{9} C_{1} x x^{2}+{ }^{8} C_{3} x^{9}{ }^{9} C_{4} x^{4}\right)$
Note ${ }^{13} C_{4}$ is weff of x^{4} in expansion of $(1+x)^{13}$

Note C_{4} is weff of x^{4} in expansion of $(1+x)$
\therefore find coeff of x^{4} in expranicon of $(1+x)^{4}(1+x)^{9}$.
${ }_{6}{ }^{4} C_{0}{ }^{9} C_{4}+{ }^{4}+{ }^{4} C_{1}{ }^{9} C_{3}+{ }^{4} C_{2}{ }^{9} C_{2}+{ }^{4} C_{3}{ }^{9} C_{1}+{ }^{4} C_{4}{ }^{9} C_{0}$
Equating wepficiets give rerolt.
(d) (i)In

$$
\begin{aligned}
& T_{k}={ }^{20} C_{k} 2^{20-k} \cdot(5 x)^{k} \\
& ={ }^{20} C_{k} 2_{1 a-k}^{20-k} 5^{k} x^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(100-5 k)}{2 k+2} \times x \text {. }
\end{aligned}
$$

(ii). If $x=\frac{1}{3} \quad \frac{T_{k+1}}{T_{k}}=\frac{100-5 k}{6 k+6}$

For greatest term find k sudi tlat

$$
\begin{aligned}
& \frac{T_{k+1}}{T_{k}}>1 \\
& \text { ie } \quad 100-5 k>1 \\
& \quad 6 k+6 \\
& 100-5 k>6 k+6 \\
& 11 k<94 \\
& k<8 \frac{6}{11}
\end{aligned}
$$

ie $\alpha=8$ is hequent value for futuch thes is twre $\therefore T_{9}>T_{8}>T_{7}$ ar. ie T_{9} is queatent

$$
T_{q}={ }^{20} C_{9} 2^{11} 5^{9}\left(\frac{1}{3}\right)^{9}
$$

