NORTH SYDNEY GIRLS HIGH SCHOOL

YEAR 12 - TERM 2 ASSESSMENT

2003

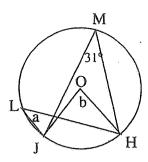
MATHEMATICS

EXTENSION 1 COURSE

TIME ALLOWED: 60 MINUTES

INSTRUCTIONS:

- This test is worth 20% of the HSC assessment
- Start each question on a new page
- Show all necessary working
- There are six questions


QUESTION 1 (9 Marks)

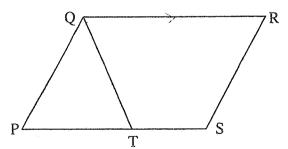
Marks

2

2

a) O is the centre of the circle Find the value of a and b, giving reasons

- b) Consider the polynomial $P(x) = x^3 5x + c$
 - (i) Find the value of c if x + 2 is a factor of P(x)
 - (ii) For this value of c, find Q(x) such that P(x) = (x+2)Q(x)
- c) Solve for $0^{\circ} \le \theta \le 360^{\circ}$ 4 $5 \cos \theta - 2 \sin \theta = 2$


QUESTION 2 (8 Marks)

a) A function is given by the rule $f(x) = \frac{x+1}{x+2}$

Find the rule for the inverse function $f^{-1}(x)$

b) State the general solution for θ if $\cos \theta = -\frac{1}{\sqrt{2}}$

c) 4

PQRS is a parallelogram. T is a point on PS such that PQ = QT and $\hat{QRS} = \theta$

- (i) Copy the diagram showing the above information
- (ii) Show that QRST is a cyclic quadrilateral.

Continued on next page

QUESTION 3 (9 Marks)

Marks

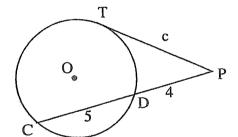
a) Find the exact value of $\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$

2

- b) Consider the function $y = 2 \cos^{-1} (1 x)$
 - (i) Find the domain and range of the function.

2 2

(ii) Sketch the graph of the function.


- c) Using the substitution, $u = 4x^2 1$, find an indefinite integral of

$$\frac{8x}{\sqrt{4x^2-1}}$$

OUESTION 4 (8 Marks)

a) O is the centre of the circle and PT is a tangent to the circle Find the value c

1

b) Find the gradient of the tangent to the curve $y = \tan^{-1}\left(\frac{1}{x}\right)$ at the point on the curve where x = 1

2

- c) P $(2t, t^2)$ is a point on the parabola $x^2 = 4y$ with focus F
 - The point M divides the interval FP externally in the ratio 3:1

 (i) Show that the co-ordinates of M are $(3t, \frac{3t^2-1}{2})$

1

- (i) Show that the co-ordinates of M are (3t, 2)
 (ii) Show that as P moves on the parabola x² = 4y, then M moves on the parabola x² = 6y + 3
- 2
- (iii) Find the co-ordinates of the focus and the equation of the directrix of the locus of M

2

Continued on next page

QUESTION 5 (8 Marks)

Marks

1

- a) Find the value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ in terms of π
- b) If α , β and γ are the roots of the equation $3x^3 + 5x^2 7x + 4 = 0$, find the values of

(i)
$$\alpha\beta + \alpha\gamma + \beta\gamma$$

(ii)
$$\alpha\beta\gamma$$

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

c) Use the substitution $x = u^2$, u > 0, to express the value of $\int_{1}^{100} \frac{1}{x + 2\sqrt{x}} dx$ in the form $\ln a$ for some constant a > 0

QUESTION 6 (8 Marks)

- a) The length of the tangent from an external point T to a circle, radius 2.5 cm is 6 cm. Calculate the radius of the circle, centre T, which touches the given circle externally. Include a diagram with your answer.
- b) The equation of the normal at the point $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$ is given by $x + py = ap^3 + 2ap$ Show that this normal meets the parabola again at the point with parameter $\left[-\frac{2+p^2}{p}\right]$
- c) The function $\frac{\ln x}{x} = -2$ has a root near x = 0.5. Starting with this value use one application of Newton's method to find an improved approximation for the value of the root, giving the answer correct to 2 decimal places.

END OF TEST

