

NORTH SYDNEY GIRLS HIGH SCHOOL

YEAR 12 - TERM 2 ASSESSMENT

2006

MATHEMATICS EXTENSION 1

TIME ALLOWED: One Hour
Plus 2 minutes reading time

INSTRUCTIONS:

- \quad Start each question on a new page
- Hand each question in separately, including a sheet for non-attempts
- Show all necessary working

Question One - (10 marks)
a) Find the exact value of
(i) $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
(ii) $\tan \left(\cos ^{-1} \frac{1}{3}\right)$
b) Find the following integrals
(i) $\int \frac{d x}{\sqrt{16-x^{2}}}$
(ii) $\int \frac{d x}{4+3 x^{2}}$
c) Two circles intersect at A and $B . C A F$ and $E B D$ are straight lines.

Prove that $C E$ is parallel to $F D$.

$$
C
$$

E

$$
\begin{array}{ll}
B & D
\end{array}
$$

Question Two - (9 marks)
Point $P\left(2 a p, a p^{2}\right)$ lies on the parabola $x^{2}=4 a y$
(i) Show that the equation of the tangent to the curve at P is

$$
y=p x-a p^{2} .
$$

(ii) This tangent cuts the x axis at T.

Find the coordinates of T.
(iii) If S is the focus of the parabola prove that $S T$ and $P T$ are at right angles to each other.
(iv) Show that the locus of the centre of the circle that passes through P, S and T is the curve $2 a y=a^{2}+x^{2}$.
a) $A B C$ is a tangent at B to the circle centre $O . \angle A B E=50^{\circ}$ and $\angle B E D=65^{\circ}$.

3 Find the size of $\angle D O E$ giving reasons for your answer.

b) Find the equation of the normal to the curve $y=\tan ^{-1}(2 x)$ at the point where $y=\frac{\pi}{4}$.
c) Find the derivative of $\sin ^{-1}(x-1)$ and hence evaluate

$$
\int_{\frac{1}{2}}^{1} \frac{d x}{\sqrt{x(2-x)}}
$$

Question Four (10 marks)
a) Solve the equation $\sin x+\cos x=0$ for all real x.
b) State the domain and range of $3 y=\sin ^{-1}\left(\frac{x}{2}\right)$ and sketch the curve.
c) Prove, by Mathematical Induction, that $\frac{2^{n}-(-1)^{n}}{3}$ is odd for all positive integers n.
a) $\quad P T$ is a tangent to the circle at $P . A B=12 \mathrm{~cm}, P T=8 \mathrm{~cm}$. Find the length of $B T$ giving reasons for your answers.

b) If $f(x)=\frac{x-4}{x-2}$, find $f^{-1}(x)$ and find its range.
c) Show that $\tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{4}\right)=\tan ^{-1}\left(\frac{2}{9}\right)$

Question Six (10 marks)
a) If $y=\frac{\cos ^{-1}\left(\frac{x}{3}\right)}{x}$, find $\frac{d y}{d x}$.
b) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$.
i) Show that the equation of the chord $P Q$ is $y-\left(\frac{p+q}{2}\right) x+a p q=0$.
ii) If the chord $P Q$ passes through the focus of the parabola show that $p q=-1$.
iii) If M is the midpoint of the focal chord $P Q, K$ is the foot of the perpendicular from M to the directrix and N is the midpoint of $M K$, find the equation of the locus of N.

End of paper

YEAR 12 EXTENSION 1 TERM 22006

	Sohutions	
	Question 110 marks a) (i) $\frac{\pi}{3}$ (ii) $\operatorname{Let} x=\cos ^{-1}\left(\frac{1}{3}\right) \Rightarrow \cos x=\frac{1}{3}$ $\begin{aligned} \therefore \hat{A F D} & =(180-x)^{\circ} \\ \hat{A F D}+\hat{E C A} & =(180-x)^{\circ}+x^{\circ} \\ & =180^{\circ} \end{aligned}$ $\therefore C E \\| F D$ (eupplementaxy cointerior angles).	
	b) (i) $\sin ^{-1}\left(\frac{x}{4}\right)+c$ (ii) $\begin{aligned} & \int \frac{d x}{4+3 x^{2}}=\frac{1}{3} \int \frac{d x}{43+x^{2}} \\ & =\frac{1}{3} \times \frac{\sqrt{3}}{2} \tan ^{-1} \frac{x}{2 / \sqrt{3}}+c \\ & =\frac{\sqrt{3}}{6} \tan ^{-1} \frac{\sqrt{3} x}{2}+c \end{aligned}$ c) Goin $A B$ $\therefore C A B E, A F D B$ are hoth cyclic quadsilaterals Let $A \hat{B D}=x^{\circ}$ $\therefore E \hat{C} A=x^{\circ}$ (enterior angle of yyclie quadiclateral equals interior opposite angle. $x^{\circ}+\hat{A F D}=180^{\circ}$ (opposite angles of cyclic quadiclateral are supplementany QUESTION 29 MARKS (i) $\text { () } \begin{aligned} x^{2} & =4 a y \\ y & =\frac{x^{2}}{4 a} \\ \frac{d y}{d x} & =\frac{2 x}{4 a} \\ \text { when } x & =2 a p, \frac{d y}{d x}=p \\ y-a p^{2} & =p(x-2 a p) \\ y-a p^{2} & =p x-2 a p^{2} \\ y & =p x-a p^{2} \end{aligned}$ (ii) $\begin{aligned} & 0=p x-a p^{2} \\ & x=a p \\ & T(a p, 0) \end{aligned}$ (iii) $S(0, a)$ $\begin{aligned} \text { Slope } S T & =\frac{a}{-a p} \\ & =-\frac{1}{P} \end{aligned}$ $\begin{aligned} \text { Slope PT } & =\frac{p}{2 p^{2}} \\ & =p \end{aligned}$ $=p$ $\begin{aligned} & -\frac{1}{p} \times P_{S T}=P-1 \\ & \therefore P T \end{aligned}$	

Year ir ExTENSION I TERM 22006

Year 12 EXTENSION I TERM 22006

c) STeP 1 whem $n=1$,

$$
\frac{2^{\prime}-(-1)^{\prime}}{3}=\frac{2+1}{3}
$$

$=1$
whech is odd.

STEP2 assume rerult is thue for $n=k$
i. e. $\frac{2^{k}-(-1)^{k}}{3}=M$ where M is an odd intege

Year 12 Extension I Term 22006

SOWTBONS p4

