NORTH SYDNEY GIRLS HIGH SCHOOL YEAR 12 - TERM 2 ASSESSMENT 2007

MATHEMATICS EXTENSION 1

TIME ALLOWED: 60 minutes
Plus 2 minutes reading time

INSTRUCTIONS:

- Start each question on a new page
- Hand each question in separately, including a sheet for non-attempts
- Show all necessary working
a) Find the following indefinite integrals:
(i) $\int \frac{d x}{x^{2}}$

1
(ii) $\int(2 x+5)^{4} d x$
b) Find the equation of the curve given $\frac{d^{2} y}{d x^{2}}=2 x-1$.

4 and when $x=3, \frac{d y}{d x}=8$, and the point $(0,-1)$ lies on the curve.

QUESTION 2. (8 marks) Start a new page
a) Convert $\frac{2 \pi}{3}$ radians to degrees.
b) Find the area of a sector of a circle of radius 8 cm if the length of the arc is 2 cm .
c) Use Simpson's rule with 5 function values to approximate $\int_{1}^{5} \frac{d x}{x+1}$.

QUESTION 3. (8 marks) Start a new page
a) Differentiate with respect to x :
(i) $e^{3 x}$
(ii) $\ln 3 x$
(iii) 3^{x} 2
b) Differentiate $e^{2 x} \cos x$ 2
c) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 4 x-\sin x}{2 x}$.

QUESTION 4. (7 marks) Start a new page
a) (i) State the period and amplitude of $y=3 \sin \frac{x}{2}$.
(ii) Sketch the curve $y=3 \sin \frac{x}{2}$ for $-\pi \leq x \leq \pi$.
b) Solve $\tan 2 x=-\sqrt{3}$ for $0 \leq x \leq 2 \pi$.
a) Find $\int_{0}^{\frac{\pi}{8}} \cos ^{2} 2 x d x$.
b) A person invests $\$ 2000$ at the beginning of each year in a superannuation fund. Assuming that interest is paid at the rate of 9% pa on this money,
(i) show that at the end of n years the investment will have a value of $\frac{218000\left(1 \cdot 09^{n}-1\right)}{9}$ dollars.
(ii) find the number of full years required for the accumulated value to reach $\$ 100000$.

QUESTION 6. (8 marks) Start a new page
a) Using the substitution $u=2+x^{2}$, find $\int 3 x\left(2+x^{2}\right)^{3} d x$.
b) (i) Show that $\frac{d}{d x}(\sec x)=\sec x \tan x$.
(ii) Given that $y=(\sec x+\tan x)^{m}$ and m is a positive integer show that $\frac{d y}{d x}=m y \sec x$.

End of paper

Question 3
cont
b) Inst $\$ 20000$ invested for n yes $2000(r 09)^{n}{ }_{n-1}$ and \qquad $2000(1.09)^{n-1}$ n^{n-1}
\qquad
neth

$$
\text { Total }=\frac{1-2000(\underbrace{\left(1.09+1.09^{2}+\cdots+1.09^{n}\right.}_{G P})}{(1.09)}
$$

after nears total value is $\frac{2000 \times 1.09\left(1.09^{n}-1\right)}{1.09}$
$=\frac{2000(1.09)\left(1.09^{n}-1\right)}{0.09}$

$$
=\frac{218000\left(1.09^{n}-1\right)}{9}
$$

ii) $\frac{218000}{9}\left(1.09^{n}-1\right)=100000$
$1.09^{n}-1=100000 \times \frac{9}{218000}$
$1.09^{n}=\frac{900}{218}+1$

$$
\begin{aligned}
&=\frac{1118}{218} \\
& n \log 1.09=\log \left(\frac{1118}{218}\right) \\
& n=\frac{\operatorname{lgg}\left(\frac{118}{218}\right)}{\log (1.09)} \\
&=18.970 \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \doteq 18.970 \\
& \therefore 19 \text { full years are required }
\end{aligned}
$$

Question 6
c) $\sqrt{3 x\left(2+x^{2}\right)^{3}} d x$

$$
u=2+x^{2}
$$

$$
\frac{d u}{d x}=2 x
$$

$$
d u=2 x d x
$$

$$
\begin{aligned}
& d u=2 x d x \\
& \therefore x d x=\frac{1}{2} d u
\end{aligned}
$$

$$
\int 3 \times u^{3} \times \frac{1}{2} d u
$$

$$
=\frac{3}{2} \frac{u^{4}}{4}+C
$$

$$
\begin{equation*}
=\frac{3}{8}\left(2+x^{2}\right)^{4}+C \tag{3}
\end{equation*}
$$

bi) $\frac{d}{d x}(\sec x)$
$=\frac{d}{d x}\left(\cos ^{4} x\right)^{-1}$
$=-\frac{1}{\cos ^{2} x} \times(-\sin x)$
$=\frac{\sin x}{\cos x} \times \frac{1}{\cos x}$

$$
\begin{equation*}
=\tan x \sec x \tag{2}
\end{equation*}
$$

ii) $y=(\sec x+\tan x)^{m}$

$$
\text { 11) } \begin{aligned}
y & =(x y \\
\frac{d y}{d x} & =m(\sec x+\tan x)^{m-1}\left(\sec x \tan x+\sec ^{2} x\right) \\
& =m \sec x(\sec x+\tan x)^{m-1}(\sec x+\tan x) \\
& =m \sec x(\sec x+\tan x)^{m} \\
& =m \sec x \times y \\
& =m y \sec x
\end{aligned}
$$

Question 5
(a) $\cos 2 A=2 \cos ^{2} A-1 \Rightarrow 2 \cos ^{2} A=1+\cos 2 A$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{8}} \cos ^{2} 2 x d x & =\frac{1}{2} \int_{0}^{\frac{\pi}{8}} 2 \cos ^{2} 2 x d x=\frac{1}{2} \int_{0}^{\frac{\pi}{8}}(1+\cos 4 x) d x \\
& =\frac{1}{2}\left[x+\frac{1}{4} \sin 4 x\right]_{0}^{\frac{\pi}{8}} \\
& =\frac{1}{2}\left(\frac{\pi}{8}+\frac{1}{4} \sin \frac{\pi}{2}\right)-0 \\
& =\frac{\pi}{16}+\frac{1}{8}
\end{aligned}
$$

(b) (i) The first $\$ 2000$ will accumulate to $2000(1 \cdot 09)^{n}$.

The second $\$ 2000$ will accumulate to $2000(1 \cdot 09)^{n-1}$ and so on until the last $\$ 2000$ will accumulate to 2000(1-09)
The investment will have an accumulated value of $\$ A$, given by:

$$
\begin{aligned}
& A=2000(1 \cdot 09)^{n}+2000(1 \cdot 09)^{n-1}+\ldots+2000(1 \cdot 09) \\
& A=2000(1 \cdot 09)^{n}+2000(1 \cdot 09)^{n-1}+\ldots+2000(1 \cdot 09) \\
&=2000[\underbrace{1 \cdot 09+\ldots+(1 \cdot 09)^{n-1}+(1 \cdot 09)^{n}}_{a=1 \cdot 09, r 1 \cdot 09}] \\
&=2000 \times 1 \cdot 09 \times\left(\frac{1 \cdot 09^{n}-1}{0 \cdot 09}\right) \\
&=\frac{218000\left(1 \cdot 09^{n}-1\right)}{9}
\end{aligned}
$$

Alternatively

Let A_{n} be the amount accumulated after n years.

$$
\begin{aligned}
& A_{1}=2000 \times 1 \cdot 09 \\
& A_{2}=\left(A_{1}+2000\right) 1 \cdot 09=2000(1 \cdot 09)^{2}+2000(1 \cdot 09) \\
& A_{3}=\left(A_{2}+2000\right) 1 \cdot 09=2000\left[1 \cdot 09+1 \cdot 09^{2}+1 \cdot 09^{3}\right] \\
& \therefore A_{n}=\left(A_{n-1}+2000\right) 1 \cdot 09=2000\left[1 \cdot 09+1 \cdot 09^{2}+1 \cdot 09^{3}+\ldots+1 \cdot 09^{n}\right] \\
& A_{n}=2000[\underbrace{1 \cdot 09+\ldots+(1 \cdot 09)^{n-1}+(1 \cdot 09)^{n}}_{a=1 \cdot 09, r=1 \cdot 09}] \\
&=2000 \times 1 \cdot 09 \times\left(\frac{1 \cdot 09^{n}-1}{0 \cdot 09}\right) \\
&=\frac{218000\left(1 \cdot 09^{n}-1\right)}{9}
\end{aligned}
$$

(ii) $A=\frac{218000\left(1 \cdot 09^{n}-1\right)}{9}=100000$
$\therefore 1 \cdot 09^{n}-1=\frac{100000 \times 9}{218000}=\frac{450}{109}$
$\therefore 1 \cdot 09^{n}=\frac{559}{109}$
$\therefore \ln \left(1 \cdot 09^{n}\right)=\ln \left(\frac{559}{109}\right)$
$\therefore n \ln 1 \cdot 09=\ln \left(\frac{559}{109}\right)$
$\therefore n=\ln \left(\frac{559}{109}\right) \div \ln 1 \cdot 09$
$\therefore n \approx 18.970$

So 19 years will be needed for the accumulated value to reach $\$ 100000$

