

NORTH SYDNEY GIRLS HIGH SCHOOL YEAR 12 – TERM 2 ASSESSMENT 2007

MATHEMATICS EXTENSION 1

TIME ALLOWED: 60 minutes Plus 2 minutes reading time

INSTRUCTIONS:

- Start each question on a new page
- Hand each question in separately, including a sheet for non-attempts
- Show all necessary working

This task is worth 25% of the HSC Assessment Mark

<u>QUESTION 1.</u> (7 marks) Start a new page

a)

- Find the following indefinite integrals: (i) $\int \frac{dx}{x^2}$ 1 (ii) $\int (2x+5)^4 dx$ 2
- b) Find the equation of the curve given $\frac{d^2y}{dx^2} = 2x 1$. and when x = 3, $\frac{dy}{dx} = 8$, and the point (0, -1) lies on the curve.

<u>QUESTION 2.</u> (8 marks) Start a new page

- a) Convert $\frac{2\pi}{3}$ radians to degrees. 1
- b) Find the area of a sector of a circle of radius 8 cm if the length of the arc is 2 cm. **3**
- c) Use Simpson's rule with 5 function values to approximate $\int_{1}^{5} \frac{dx}{x+1}$. 4

<u>QUESTION 3.</u> (8 marks) Start a new page

a)	Differentiate with respect to x :	
	(i) e^{3x}	1
	(ii) $\ln 3x$	1
	(iii) 3^x	2
b)	Differentiate $e^{2x} \cos x$	2
	sin Ass. sin a	

c) Evaluate
$$\lim_{x \to 0} \frac{\sin 4x - \sin x}{2x}$$
.

<u>QUESTION 4.</u> (7 marks) Start a new page

a) (i) State the period and amplitude of $y = 3\sin\frac{x}{2}$. 2

(ii) Sketch the curve
$$y = 3\sin\frac{x}{2}$$
 for $-\pi \le x \le \pi$. 2

b) Solve
$$\tan 2x = -\sqrt{3}$$
 for $0 \le x \le 2\pi$.

continued on next page

Marks

4

a) Find
$$\int_{0}^{\frac{\pi}{8}} \cos^2 2x \, dx$$
. 3

Marks

- b) A person invests \$2000 at the beginning of each year in a superannuation fund. Assuming that interest is paid at the rate of 9% pa on this money,
 - (i) show that at the end of *n* years the investment will have a value of 2
 218 000(1 · 09ⁿ 1) / 9 dollars.
 (ii) find the number of full years required for the accumulated value to 2
 - (ii) find the number of <u>full</u> years required for the accumulated value to reach \$100 000.

<u>QUESTION 6.</u> (8 marks) Start a new page

a) Using the substitution
$$u = 2 + x^2$$
, find $\int 3x(2 + x^2)^3 dx$. 3

b) (i) Show that
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
. 2

(ii) Given that
$$y = (\sec x + \tan x)^m$$
 and *m* is a positive integer
show that $\frac{dy}{dx} = my \sec x$.

End of paper

$$\begin{array}{l} \underbrace{\operatorname{Verselion}}_{(k)} & \underbrace{\operatorname{Verselion}}_{(k)} &$$

Question 5 c.d
Question 5 c.d
() 1st 32000 invested for nyre 2000(rog)ⁿ,
2nd
$$n = -2000(rog)n,$$

 $n = -2000(rog)n,$
 $n = -200(rog)n,$
 $n = -2000(rog)n,$
 n

Question 5

(a)
$$\cos 2A = 2\cos^2 A - 1 \Rightarrow 2\cos^2 A = 1 + \cos 2A$$

$$\int_0^{\frac{\pi}{8}} \cos^2 2x dx = \frac{1}{2} \int_0^{\frac{\pi}{8}} 2\cos^2 2x dx = \frac{1}{2} \int_0^{\frac{\pi}{8}} (1 + \cos 4x) dx$$

$$= \frac{1}{2} \left[x + \frac{1}{4} \sin 4x \right]_0^{\frac{\pi}{8}}$$

$$= \frac{1}{2} \left(\frac{\pi}{8} + \frac{1}{4} \sin \frac{\pi}{2} \right) - 0$$

$$= \frac{\pi}{16} + \frac{1}{8}$$

(b) (i) The first \$2000 will accumulate to
$$2000(1 \cdot 09)^n$$
.
The second \$2000 will accumulate to $2000(1 \cdot 09)^{n-1}$ and so on until the last \$2000
will accumulate to $2000(1 \cdot 09)$
The investment will have an accumulated value of \$*A*, given by:
 $A = 2000(1 \cdot 09)^n + 2000(1 \cdot 09)^{n-1} + ... + 2000(1 \cdot 09)$

$$A = 2000(1 \cdot 09)^{n} + 2000(1 \cdot 09)^{n-1} + \dots + 2000(1 \cdot 09)$$
$$= 2000 \left[\underbrace{1 \cdot 09 + \dots + (1 \cdot 09)^{n-1} + (1 \cdot 09)^{n}}_{a=1 \cdot 09, r=1 \cdot 09} \right]$$
$$= 2000 \times 1 \cdot 09 \times \left(\frac{1 \cdot 09^{n} - 1}{0 \cdot 09} \right)$$
$$= \frac{218\ 000(1 \cdot 09^{n} - 1)}{9}$$

Alternatively

Let A_n be the amount accumulated after *n* years. $A_1 = 2000 \times 1.09$

$$A_{2} = (A_{1} + 2000)1 \cdot 09 = 2000(1 \cdot 09)^{2} + 2000(1 \cdot 09)$$

$$A_{3} = (A_{2} + 2000)1 \cdot 09 = 2000[1 \cdot 09 + 1 \cdot 09^{2} + 1 \cdot 09^{3}]$$

$$\therefore A_{n} = (A_{n-1} + 2000)1 \cdot 09 = 2000[1 \cdot 09 + 1 \cdot 09^{2} + 1 \cdot 09^{3} + ... + 1 \cdot 09^{n}]$$

$$A_{n} = 2000\left[\underbrace{1 \cdot 09 + ... + (1 \cdot 09)^{n-1} + (1 \cdot 09)^{n}}_{a=1 \cdot 09, r=1 \cdot 09}\right]$$

$$= 2000 \times 1 \cdot 09 \times \left(\frac{1 \cdot 09^{n} - 1}{0 \cdot 09}\right)$$

$$= \frac{218\ 000(1 \cdot 09^{n} - 1)}{9}$$

(ii)
$$A = \frac{218\ 000(1\cdot09^n - 1)}{9} = 100\ 000$$
$$\therefore 1\cdot09^n - 1 = \frac{100\ 000\times9}{218\ 000} = \frac{450}{109}$$
$$\therefore 1\cdot09^n = \frac{559}{109}$$
$$\therefore \ln(1\cdot09^n) = \ln\left(\frac{559}{109}\right)$$
$$\therefore n\ln1\cdot09 = \ln\left(\frac{559}{109}\right)$$
$$\therefore n = \ln\left(\frac{559}{109}\right) \div \ln1\cdot09$$
$$\therefore n \approx 18\cdot970$$

So 19 years will be needed for the accumulated value to reach $100\ 000$