

2009

HIGHER SCHOOL CERTIFICATE

ASSESSMENT TASK #3

Mathematics Extension 1

Student Name:

General Instructions

- Reading time -2 minutes. •
- Working time 65 minutes. •
- Write using black or blue pen.
- Board approved calculators may be used. •
- All necessary working should be shown • in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for untidy • or badly arranged work.
- Start each **NEW** question on a separate answer sheet.

_____Teacher: _____

Total Marks: 57 Marks

- Attempt Questions 1 6 •
- All questions are NOT of equal value.

	Q 1		Q 2		Q 3		Q4			Q5	Q6		Total	
	acd	b	abcd	e	a	b	a	b	c		a	b	c	
Н 6														/3
H 8														/10
Н9														/31
HE 2														/3
HE 6														/10
	/9		/10		/10		/9		/10	/9		/57		

Total marks – 57 Attempt Questions 1 - 6 All questions are NOT of equal value

Start each question on a SEPARATE answer sheet.

Question 1(9 marks)Marks

(a) Evaluate
$$\int_{0}^{1} \frac{dx}{2x+1}$$
, leaving your answer in the exact form. 2

(b) Using the substitution
$$u = 4 - x^2$$
, evaluate $\int \frac{x}{\sqrt{4 - x^2}} dx$ 3

(c) Let
$$f(x) = \frac{1}{2}(e^{x} + e^{-x})$$
 and $F(x) = \frac{1}{2}(e^{x} - e^{-x})$
Prove that $[f(x) + F(x)]^{n} = f(nx) + F(nx)$
2

(d) Evaluate
$$\int_0^1 \frac{e^x}{e^x + 1} dx$$
 2

Question 2 (10 Marks) Start a NEW answer sheet.

(a) Solve
$$e^x = 5$$
, leaving your answer correct to 3 decimal places

(b) Find a primitive of
$$\frac{3x}{1+x^2}$$
 2

(c) Find
$$\frac{d}{dx}(3x\log_e x)$$
 2

(d) Evaluate
$$\int_0^3 3^x dx$$
 2

(e) Using the substitution
$$u = \log_e x$$
, evaluate $\int_1^e \frac{(1 + \log_e x)^2}{x} dx$ 3

Marks

1

Question 3 (10 Marks) Start a NEW answer sheet.

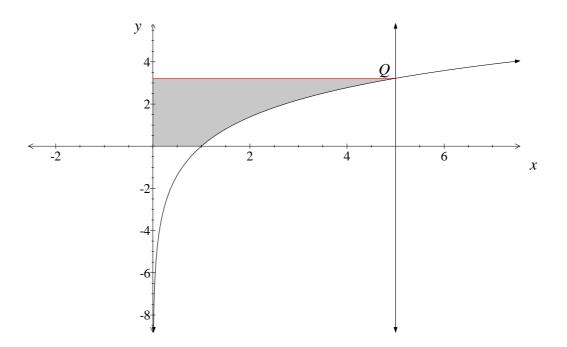
(a) (i) Show that
$$\frac{5}{\sqrt{5x+3} - \sqrt{5x-2}} = \sqrt{5x+3} + \sqrt{5x-2}$$
 2

(ii) Hence find
$$\int \frac{dx}{\sqrt{5x+3}-\sqrt{5x-2}}$$
 2

(b) (i) Show that
$$\frac{d}{dx}(x \ln x - x) = \ln x$$
.

(ii) Hence, or otherwise, find
$$\int \ln x^2 dx$$
. 2

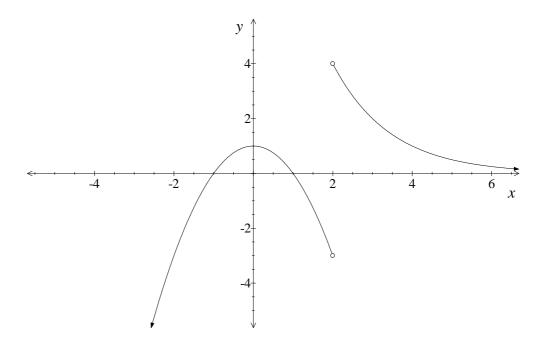
(iii) The graph below shows the curve $y = \ln x^2$ (x > 0) which meets the line x = 5 **3** at *Q*. Using your answers above, or otherwise, find the area of the shaded region.



Question 4 (9 Marks) Start a NEW answer sheet.

(a) Find
$$\int \frac{x+1}{x^2} dx$$
 2

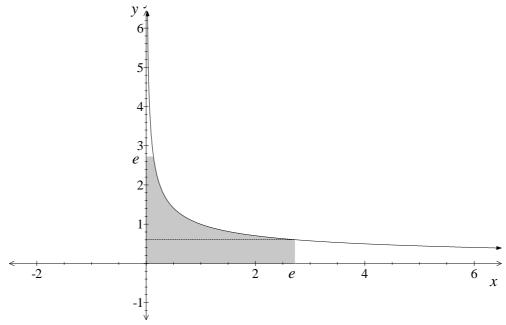
(b) The following graph shows the gradient function y = f'(x). The graph shows that f'(1) = f'(-1) = 0. Sketch the graph of y = f(x), given that f'(x) is continuous everywhere except at x = 2 and that f(0) = 1 and f(-1) = -2



(c) The shaded region below is that bounded by $y = \frac{1}{\sqrt{x}}$, the coordinate axes and 4

the lines x = e and y = e.

Find the volume when the shaded region is rotated about the *y*-axis, correct to 2 significant figures.



Marks

3

- 5 -

Question 5 (10 Marks) Start a NEW answer sheet.

Consider the function
$$y = \frac{\ln x}{x}$$

(a) What is the domain of this function? 1
(b) Show that $\frac{d}{dx} \left(\frac{\ln x}{x} \right) = -\left(\frac{\ln x - 1}{x^2} \right)$ 1
(c) Describe the behaviour of the function as x
(i) approaches zero. 1
(ii) increases indefinitely 1
(d) Find any stationary points and determine their nature. 2
(e) Sketch the curve of this function. 2
(f) Hence find the value(s) of k for which $e^{kx} = x$ has no solutions. 2

Marks

Question 6	(9 Marks) Start a NEW answer sheet.	Marks
(a)	Use mathematical induction to show that the following statement is true	3
	$n^3 + 2n$ is a multiple of 12	
	where <i>n</i> is an <u>even</u> positive integer	

(b) By use of an appropriate diagram and reasons, evaluate the following sum. 2 Do NOT evaluate any primitive functions.

$$\int_0^1 e^x dx + \int_1^e \ln x \, dx$$

(c) (i) Show
$$\frac{1}{u} - \frac{1}{u+1} = \frac{1}{u(u+1)}$$
 1

(ii) Using the substitution
$$x = \ln u$$
, find $\int \frac{dx}{1 + e^x}$ 3

End of paper

THIS PAGE IS INTENTIONALLY LEFT BLANK

STANDARD INTEGRALS

•

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, \quad x > 0$$

NORTH SYDNEY GIRLS HIGH SCHOOL

2009

HIGHER SCHOOL CERTIFICATE

ASSESSMENT TASK #3

Mathematics Extension 1

SAMPLE SOLUTIONS

(a) Evaluate $\int_{0}^{1} \frac{dx}{2x+1}$, leaving your answer in the exact form. $\int_{0}^{1} \frac{dx}{2x+1} = \frac{1}{2} \int_{0}^{1} \frac{2dx}{2x+1} = \frac{1}{2} [\ln|2x+1|]_{0}^{1}$ $= \frac{1}{2} (\ln 3 - \ln 1)$ $= \frac{1}{2} \ln 3$

(b) Using the substitution
$$u = 4 - x^2$$
, evaluate $\int \frac{x}{\sqrt{4 - x^2}} dx$

$$u = 4 - x^{2} \Rightarrow du = -2xdx$$

$$\int \frac{x}{\sqrt{4 - x^{2}}} dx = -\frac{1}{2} \int \frac{-2x}{\sqrt{4 - x^{2}}} dx = -\frac{1}{2} \int \frac{du}{\sqrt{u}} = -\frac{1}{2} \int u^{-\frac{1}{2}} du$$

$$= -u^{\frac{1}{2}} + c = -\sqrt{4 - x^{2}} + c$$

(c)

Let
$$f(x) = \frac{1}{2}(e^{x} + e^{-x})$$
 and $F(x) = \frac{1}{2}(e^{x} - e^{-x})$
Prove that $[f(x) + F(x)]^{n} = f(nx) + F(nx)$
 $f(x) + F(x) = \frac{1}{2}(e^{x} + e^{-x}) + \frac{1}{2}(e^{x} - e^{-x})$
 $= 2 \times (\frac{1}{2}e^{x}) = e^{x}$

LHS =
$$[f(x) + F(x)]^n = (e^x)^n = e^{nx}$$

RHS = $f(nx) + F(nx) = \frac{1}{2}(e^{nx} + e^{-nx}) + \frac{1}{2}(e^{nx} - e^{-nx})$
= $2 \times \frac{1}{2}e^{nx} = e^{nx}$

(d) Evaluate
$$\int_{0}^{1} \frac{e^{x}}{e^{x}+1} dx$$

 $\int_{0}^{1} \frac{e^{x}}{e^{x}+1} dx = \left[\ln\left(e^{x}+1\right)\right]_{0}^{1} = \ln\left(e+1\right) - \ln\left(2\right) = \ln\left(\frac{e+1}{2}\right)$

(a) Solve $e^x = 5$, leaving your answer correct to 3 decimal places $e^x = 5 \Longrightarrow x = \ln 5 \approx 1.609437912...$ x = 1.609 [3 dp]

(b) Find a primitive of
$$\frac{3x}{1+x^2}$$

$$\int \frac{3x}{1+x^2} dx = \frac{3}{2} \int \frac{2x}{1+x^2} dx = \frac{3}{2} \ln(1+x^2)$$

(c) Find
$$\frac{d}{dx}(3x\log_e x)$$

 $\frac{d}{dx}(3x\log_e x) = 3x \times \frac{1}{x} + 3 \times \ln x$
 $= 3 + 3\ln x$

(d) Evaluate
$$\int_{0}^{3} 3^{x} dx$$

 $\int_{0}^{3} 3^{x} dx = \left[\frac{3^{x}}{\ln 3}\right]_{0}^{3} = \frac{1}{\ln 3} (3^{3} - 3^{0}) = \frac{26}{\ln 3}$

(e) Using the substitution
$$u = \log_e x$$
, evaluate $\int_1^e \frac{(1 + \log_e x)^2}{x} dx$
 $x = 1 \Rightarrow u = \ln 1 = 0$
 $x = e \Rightarrow u = \ln e = 1$
 $u = \ln x \Rightarrow du = \frac{dx}{x}$

$$\int_1^e \frac{(1 + \log_e x)^2}{x} dx = \int_1^e (1 + \log_e x)^2 \frac{dx}{x}$$

$$= \int_0^1 (1 + u)^2 du$$

$$= \left[\frac{1}{3}(1 + u)^3\right]_0^1$$

$$= \frac{1}{3}(2^3 - 1^3) = \frac{7}{3}$$

(a) (i) Show that
$$\frac{5}{\sqrt{5x+3} - \sqrt{5x-2}} = \sqrt{5x+3} + \sqrt{5x-2}$$

LHS =
$$\frac{5}{\sqrt{5x+3} - \sqrt{5x-2}}$$

= $\frac{5}{\sqrt{5x+3} - \sqrt{5x-2}} \times \frac{\sqrt{5x+3} + \sqrt{5x-2}}{\sqrt{5x+3} + \sqrt{5x-2}}$
= $\frac{5(\sqrt{5x+3} + \sqrt{5x-2})}{[(5x+3) - (5x-2)]}$
= $\frac{5(\sqrt{5x+3} + \sqrt{5x-2})}{5}$
= $\sqrt{5x+3} + \sqrt{5x-2}$
= RHS

(ii) Hence find
$$\int \frac{dx}{\sqrt{5x+3} - \sqrt{5x-2}}$$

$$\int \frac{dx}{\sqrt{5x+3} - \sqrt{5x-2}} = \int \frac{\left(\sqrt{5x+3} + \sqrt{5x-2}\right)dx}{5}$$
$$= \frac{1}{5} \int \left[\left(5x+3\right)^{\frac{1}{2}} + \left(5x-2\right)^{\frac{1}{2}} \right] dx$$
$$= \frac{1}{5} \left[\frac{1}{5} \times \frac{2}{3} \left(5x+3\right)^{\frac{3}{2}} + \frac{1}{5} \times \frac{2}{3} \left(5x-2\right)^{\frac{3}{2}} \right] + C$$
$$= \frac{2}{75} \left[\left(5x+3\right)^{\frac{3}{2}} + \left(5x-2\right)^{\frac{3}{2}} \right] + C$$

Question 3 continued

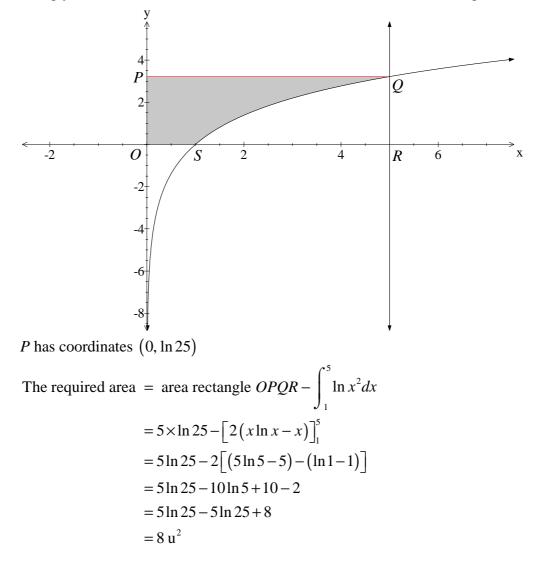
(b) (i) Show that
$$\frac{d}{dx}(x \ln x - x) = \ln x$$
.

$$\frac{d}{dx}(x\ln x - x) = x \times \frac{1}{x} + 1 \times \ln x - 1$$
$$= 1 + \ln x - 1$$
$$= \ln x$$

(ii) Hence, or otherwise, find
$$\int \ln x^2 dx$$
.
$$\int \ln x^2 dx = 2 \int \ln x dx = 2(x \ln x - x) + C$$

(iii) The graph below shows the curve $y = \ln x^2$ (x > 0) which meets the line x = 5 at Q.

Using your answers above, or otherwise, find the area of the shaded region.



(a) Find
$$\int \frac{x+1}{x^2} dx$$

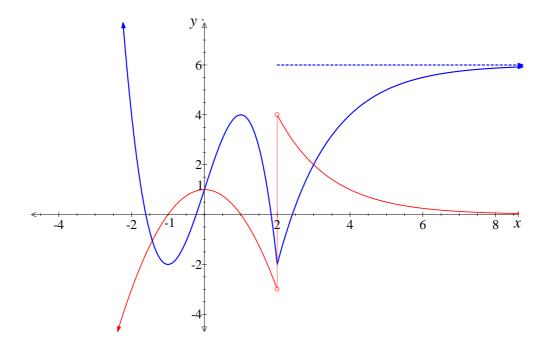
$$\int \frac{x+1}{x^2} dx = \int \left(\frac{1}{x} + \frac{1}{x^2}\right) dx = \int \left(\frac{1}{x} + x^{-2}\right) dx$$
$$= \ln|x| - x^{-1} + C$$
$$= \ln|x| - \frac{1}{x} + C$$

2

3

(b) The following graph shows the gradient function y = f'(x). The graph shows that f'(1) = f'(-1) = 0. Sketch the graph of y = f(x), given that f'(x) is continuous everywhere except at x = 2 and that f(0) = 1 and f(-1) = -2

A possible solution:

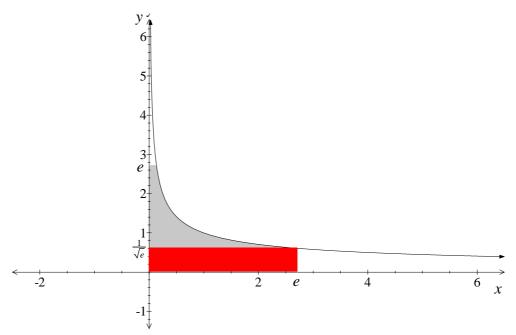


Question 4 continued

(c) The shaded region below is that bounded by $y = \frac{1}{\sqrt{x}}$, the coordinate axes and 4

the lines x = e and y = e.

Find the volume when the shaded region is rotated about the *y*-axis, correct to 2 significant figures.



The volume V is the sum of two volumes V_1 and V_2 .

 V_1 is the volume formed by rotating the curve $y = \frac{1}{\sqrt{x}}$ from $y = \frac{1}{\sqrt{e}}$ to y = eabout the y-axis. $y = \frac{1}{\sqrt{x}} \Rightarrow x = \frac{1}{y^2} \Rightarrow x^2 = \frac{1}{y^4} = y^{-4}$ V_2 is the cylinder formed by rotating the line x = e about the y-axis.

It has radius *e* and height $\frac{1}{\sqrt{e}}$.

$$V_{1} = \pi \int_{\frac{1}{\sqrt{e}}}^{e} x^{2} dy = \pi \int_{\frac{1}{\sqrt{e}}}^{e} y^{-4} dy$$

$$= \pi \left[-\frac{1}{3} y^{-3} \right]_{\frac{1}{\sqrt{e}}}^{e} = \frac{\pi}{3} \left[-\frac{1}{y^{3}} \right]_{\frac{1}{\sqrt{e}}}^{e}$$

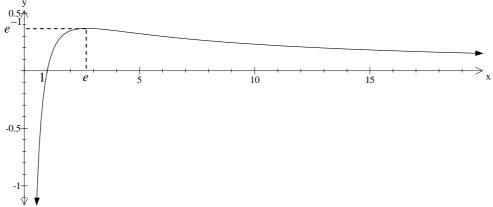
$$\left[NB \left(\sqrt{e} \right)^{3} = e\sqrt{e} \right]$$

$$= \frac{\pi}{3} \left[-\frac{1}{e^{3}} + \frac{1}{\frac{1}{e\sqrt{e}}} \right] = \frac{\pi}{3} \left[\frac{\sqrt{e}}{e^{2}} - \frac{1}{e^{3}} \right]$$

$$= \frac{\pi}{3} \left(e\sqrt{e} - \frac{1}{e^{3}} \right)$$

 $V = \frac{\pi}{3} \left(e\sqrt{e} - \frac{1}{e^3} \right) + \pi e^{\frac{3}{2}} \approx 19 \ \text{u}^3$

	Consider the function $y = \frac{\ln x}{r}$							
(a)	What is the domain of this function?	<i>x</i> > 0						
(b)	Show that $\frac{d}{dx}\left(\frac{\ln x}{x}\right) = -\left(\frac{\ln x - 1}{x^2}\right)$							
	$\frac{d}{dx}\left(\frac{\ln x}{x}\right) = \frac{x \times \frac{1}{x} - \ln x \times 1}{x^2} = \frac{1 - \ln x}{x^2} = -\left(\frac{\ln x - 1}{x^2}\right)$							
(c)	 Describe the behaviour of the function as x (i) approaches zero. (ii) increases indefinitely 	$\begin{array}{c} y \to -\infty \\ y \to 0 \end{array}$						
(d)	Find any stationary points and determine their nature. $y' = 0 \Rightarrow \ln x - 1 = 0 \Rightarrow \ln x = 1$							
	$\therefore x = e \Rightarrow \left(e, \frac{1}{e}\right)$ is the stationary point							
	x 2 e 3 Only need to check (1-ln)	(x) as $x^2 > 0$.						
	y' 0.3 0 -0.1 So (e, e^{-1}) is a maximum	turning point.						
(e)	Sketch the curve of this function.							



(f) Hence find the value(s) of k for which $e^{kx} = x$ has no solutions. $e^{kx} = x \Longrightarrow kx = \ln x$

$$\therefore k = \frac{\ln x}{x}$$

So the solutions to $e^{kx} = x$ are found by intersecting the line y = k with

$$y = \frac{\ln x}{x}$$

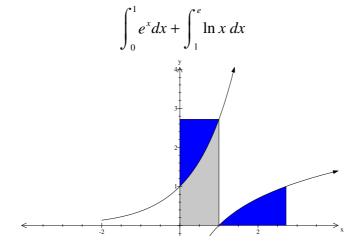
So there will be no solutions when $k > \frac{1}{e}$.

(a)

Use mathematical induction to show that the following statement is true $n^3 + 2n$ is a multiple of 12 where *n* is an <u>even</u> positive integer Test n = 2 $2^3 + 2 \times 2 = 12$ Clearly n = 2 is true. Assume true for n = 2k i.e. $(2k)^3 + 2(2k) = 12N, N \in \mathbb{Z}$ $\therefore 8k^3 + 4k = 12N$. NTP true for n = 2k + 2 i.e. $(2k + 2)^3 + 2(2k + 2) = 12M, M \in \mathbb{Z}$ $(2k + 2)^3 + 2(2k + 2) = 8(k + 1)^3 + 4(k + 1)$ $= 8(k^3 + 3k^2 + 3k + 1) + 4k + 4$ $= (8k^3 + 4k) + 24k^2 + 24k + 12$ $= 12(N + 2k^2 + 2k + 1)$ = 12M [$\because N + 2k^2 + 2k + 1 \in \mathbb{Z}$] So the statement is true for n = 2k + 2 provided it is true for n = 2k.

So by the principle of mathematical induction it is true for all positive even integers.

(b) By use of an appropriate diagram and reasons, evaluate the following sum.**Do NOT evaluate any primitive functions.**



By symmetry the integral $\int_{1}^{e} \ln x \, dx$ produces the same area as that of e^{x} next to the y-axis for $1 \le y \le e$.

So $\int_{0}^{1} e^{x} dx + \int_{1}^{e} \ln x \, dx$ is the area of the rectangle with dimensions $1 \times e$ $\therefore \int_{0}^{1} e^{x} dx + \int_{1}^{e} \ln x \, dx = e$

(c) (i) Show
$$\frac{1}{u} - \frac{1}{u+1} = \frac{1}{u(u+1)}$$

 $\frac{1}{u} - \frac{1}{u+1} = \frac{u+1-u}{u(u+1)} = \frac{1}{u(u+1)}$

(ii) Using the substitution
$$x = \ln u$$
, find $\int \frac{dx}{1 + e^x}$
 $x = \ln u \Rightarrow dx = \frac{du}{u}$
 $x = \ln u \Rightarrow u = e^x$

$$\int \frac{dx}{1 + e^x} = \int \frac{1}{1 + e^x} \times dx = \int \left(\frac{1}{1 + u}\right) \frac{du}{u}$$
 $= \int \left[\frac{du}{u(u+1)}\right] = \int \left(\frac{1}{u} - \frac{1}{u+1}\right) du$
 $= \ln u - \ln(u+1) + C$
 $= \ln\left(\frac{e^x}{1 + e^x}\right) + C$
 $\left[= x - \ln(1 + e^x) + C\right]$

End of Solutions