THE SCOTS COLLEGE Sydney

Extension One Mathematics

HSC Task 3

Weighting 20\%
$1^{\text {st }}$ June 2009

Total marks - 33

- Attempt all questions.

General Instructions

- Working time - $\mathbf{4 5}$ Minutes.
- Write using black or blue pen.
- Start a new page for every question
- Board-approved calculators may be used.
- All necessary working should be shown in every question.

Table of Standard Integrals provided at the end of the paper.

QUESTION 1 (10 Marks)

a) The temperature of a cup of coffee varies according to the rate given by $\frac{d T}{d t}=-k\left(T-T_{o}\right)$, where T is the temperature in degrees after elapsed time, t (in minutes), and T_{0} is the temperature of the environment.

The cup, initially at $120^{\circ} \mathrm{C}$, is kept in a cold chamber at $-20^{\circ} \mathrm{C}$. After 3 minutes, the temperature of the cup drops down to $80^{\circ} \mathrm{C}$.
i. Show that $T=T_{o}+A e^{-k t}$ is a possible function that represents the variation of temperature with time for the cup.
ii. Find the values of A and k.
iii. If the cup at $80^{\circ} \mathrm{C}$ is now placed in a room whose temperature is $20^{\circ} \mathrm{C}$, assuming that the value of k remains unchanged, find the temperature of the cup after a further 20 minutes.
b) A kite flying at a constant height of 40 m above the ground, is being dragged along by wind at a rate of $10 \mathrm{~m} / \mathrm{s}$. The kite is initially vertically above the ground. At what rate is the length of the string, tied to the kite, being released from the ground, increasing after 3 seconds. (Assume that the string remains straight).

QUESTION 2 (14 Marks) START A NEW PAGE

a) Prove the following by mathematical induction

$$
\begin{equation*}
2\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right) \ldots \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{n} \text { for all positive integers } n \geq 2 . \tag{4}
\end{equation*}
$$

b) Consider the series $\sum_{r=1}^{\infty}\left(\log _{e} x\right)^{r}$, where $x>0$.
i. Write down the first term, common ratio and the sum of n terms of the series.
ii. Find the range of values of x, such that a limiting sum exists for this series.
iii. Find the limiting sum if $x=\sqrt{e}$.
c) Let T_{n} and S_{n} represent the $n^{\text {th }}$ Term and the Sum of n terms respectively, of an Arithmetic Progression, with first term a and common difference $d(a, d \neq 0)$. If T_{10}, T_{4} and T_{6} form consecutive terms of a Geometric Progression,
i. Show that $S_{10}=0$.
ii. Show that $S_{6}+S_{12}=0$

QUESTION 3 (9 Marks) START A NEW PAGE

Gordon and Gabbie take a loan of $\$ 500,000$ from Community Bank, to buy a new house. The period of the loan is 30 years and interest is charged at the rate of 6% p.a. on the amount owing. Repayment is through a fixed monthly instalment of $\$ M$, paid at the end of each month.

Let A_{n} be the amount owing at the end of the $n^{\text {th }}$ month, after the payment of the monthly instalment.
i. Show that at the end of the third month, the amount owing is given by

$$
\begin{equation*}
A_{3}=500000(1.005)^{3}-M\left(1+1.005+1.005^{2}\right) \tag{2}
\end{equation*}
$$

ii. By first arriving at a general expression for A_{n}, find the value of M.
iii. Find the amount owing to the bank at the end of 4 years.
iv. At the end of the $4^{\text {th }}$ year, the bank raises the interest rate to 7.2%. At the same time, Gordon and Gabbie decide to make fixed monthly payments of $\$ 4200$ to the bank. Find the time it would now take for the couple to completely pay off the loan. Express your answer in years and months.

END OF PAPER

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\sin -\frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\frac{1}{\int} \frac{1}{\sqrt{x^{2}+a^{2}}} d x
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Yr 12 Math $\frac{\text { Ext. } 1 \text { lash's }}{\text { SoLuTIONS }}$

Question: 1
(a)

$$
\begin{aligned}
T & =T_{0}+A e^{-k t} \\
\frac{d T}{d t} & =-k A e^{-k t} \\
& =-k\left(T-T_{0}\right) \quad\left(\because A e^{-k t}=T-T_{0}\right)
\end{aligned}
$$

Hence $T=T_{0}+A e^{-k t}$ is a possible soluturi
(i) When $t=0, T=120^{\circ} \mathrm{C}, T_{0}=-20^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 120=-20+A e^{\circ} \\
& \therefore A=140^{\circ} \mathrm{C}
\end{aligned}
$$

When $t=3$ minutes, $T=80^{\circ} \mathrm{C}$

$$
\begin{aligned}
80 & =-20+140 e^{-3 k} \\
100 & =140 e^{-3 k} \\
e^{-3 k} & =\frac{10}{14} \\
& =\frac{5}{7} \\
\therefore-3 k & =\log _{e} \frac{5}{7} \\
k & =-\frac{1}{3} \log _{e} \frac{5}{7}=0.112157 \\
& \simeq 0.112
\end{aligned}
$$

(iii) $T_{0}=20^{\circ} \mathrm{C}$
at $t=0, T=80^{\circ} \mathrm{C}$
when

$$
\text { When } \begin{aligned}
t=15 \text { min } T= & 20+60 e^{-157} \\
& =31.156 \mathrm{C} \\
& =31.2^{\circ} \mathrm{C}
\end{aligned}
$$

Question:
(b)

$$
\begin{aligned}
& \frac{d x}{d t}=10 \mathrm{~m} / \mathrm{s} \\
& \frac{d l}{d t}=?
\end{aligned}
$$

$$
\begin{aligned}
l^{2} & =x^{2}+40^{2} \\
l & =\sqrt{x^{2}+1600} \quad(\because l>0) \\
\frac{d l}{d x} & =\frac{1}{2}\left(x^{2}+1600\right)^{-\frac{1}{2}} \cdot 2 x \\
& =\frac{x}{\sqrt{x^{2}+1600}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d l}{d t} & =\frac{d x}{d t} \times \frac{d l}{d x} \\
& =10 * \frac{x}{\sqrt{x^{2}+1600}}
\end{aligned}
$$

When $t=3$ seconds $x-30$

$$
\begin{aligned}
\frac{d l}{d t} & =\frac{10 \times 30}{\sqrt{900+1600}} \\
& =\frac{10 \times 3 \phi}{5 \varnothing} \\
& =6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$0=p b+b z \cdots \quad o \neq p$
$0=(p b+b \tau) p b$

$$
0={ }_{2} p 9 \varepsilon+p 08
$$

$$
\tau p s \eta+p 0+1+\tau 0=\tau p b+100 q+\tau 0
$$

nuraffyp nowmon =p

$$
\begin{array}{ll}
p \text { nommo }=0 & p \varepsilon+0=1 \\
\text { mos re. } f=0, & p b+0=0,1
\end{array}
$$

$$
\begin{align*}
& 1=\frac{z / 1-1}{\tau / 1}=\infty_{S} \\
& \tau / 1=\partial s f_{0}=l \\
& \frac{z}{1}=\partial s f_{0}=0 \\
& \frac{1-1}{0}=\infty_{S} \tag{!!!}
\end{align*}
$$

$$
\cdots+\varepsilon_{\varepsilon}\left(x^{2} b_{0}\right)+z_{z}\left(x^{2 b} 0\right)+x^{2} b_{0}=\operatorname{con}_{S} \text { (1!) }
$$

$\tau<u$ po et sery a promspape of
curpmoil rosyomastow to ndroviey wit ha ansoval. $1+y=4$ ist rney ronstp
SHy \bar{i}
$\frac{1+x}{z+x}=$
$\frac{(1+x) x}{(2+x) x}=$ $\left(x-x+x z+z^{x}\right) \frac{(1+x) x}{1}=$
$[1-z(1+x)] \frac{(1+x) x}{1}=$

$$
\frac{(1+x) x}{1}-\frac{x}{1+x}=
$$

$$
(2 d x+5 \text { woef }) \quad\left(\frac{2(1+x)}{1}-1\right)\left(\frac{x}{1+x}\right)=5+7
$$

$$
\begin{array}{r}
\frac{1+x}{c+x}=\left(\frac{2(1+x)}{1}-1\right)\left(\frac{2 x}{1}-1\right) \cdots\left(\frac{b}{1}-1\right)\left(\frac{h}{1}-1\right) e \text { ? } \\
1+x=\frac{1}{4} \text { at ony ande }: \overline{\varepsilon d x+5}
\end{array}
$$

$$
1=4 \text { sf ones sorsti }
$$

$$
\frac{\tau}{\varepsilon}=\frac{\tau}{1+\tau}=s+y
$$

$$
\frac{2}{\varepsilon}=\frac{h}{\varepsilon} \times 2=\left(\frac{h}{T}-1\right) 6: 5+17
$$

$$
\begin{aligned}
& \binom{a=1}{1 \neq x} \quad \begin{array}{l}
a>x>\frac{\partial}{1}
\end{array} \\
& \begin{array}{ll}
1-3<x & \begin{array}{ll}
1+2 x \\
1-\left\langle x^{2} \log \right. & = \\
& 1>x^{l_{0}} \\
1>\mid x^{2} b_{0}
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
S_{10} & =\frac{10}{2}(2 a+9 d) \\
& =5(2 a+9 d) \\
& =0 \quad(\because 2 a+9 d)=0)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{6} & +S_{12}=0 \\
L H 9 & =\frac{6}{2}(2 a+5 d)+\frac{12}{2}(2 a+11 d) \\
& =6 a+15 d+12 a+66 d \\
& =18 a+81 d \\
& =9(2 a+9 d) \\
& =0 \quad(\because 2 a+9 d=0)
\end{aligned}
$$

Yr 12 Extension 1 Mathemance
Assessment Task 3-SOCUTIONS
Question' 3
(a) Ant Borrowed $=\$ 500,000$

Interest Rate: 6% p.a $=0.5 \%$ p.month: 0.005
Period: 30 years $=360$ months
Repayment: $\$ M$ per month.
(i) $A_{n}=$ Ant owing at the end of $n^{\text {th }}$ month.

$$
\begin{aligned}
A_{1} & =500000(1.005)-M \\
A_{2} & =[500000(1.005)-M] 1.005-M \\
& =500000(1.005)^{2}-1.005 M-M \\
A_{3} & =500000(1.005)^{3}-1.005^{2} M-1.005 M-M \\
& =500000(1.005)^{3}-M\left(1+1.005+1.005{ }^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } A_{3}=500000(1.005)^{n}-M\left(1+1.005+1.005^{2}+\cdots+1.0\right. \\
& 0=A_{360} \\
&=500000(1.005)^{360}-M\left(1+1.005+1.005^{2}+\cdots+1.00\right. \\
& M\left[\frac{1\left(1.005^{360}-1\right)}{1.005-1}\right]=500000(1.005)^{360} \\
& \therefore M=\frac{0.005 \times 500000(1.005)^{360}}{1.005^{360}-1} \\
&=2997.7526 \cdots \\
&=\$ 2997.75
\end{aligned}
$$

 ynow 68 uboh 51 a! uooh $L \cdot G 1=$
mperm \& $6.881=$

$$
000002={ }_{n}(900 \cdot 1) \text { Lert }
$$

 $\left(1-{ }_{k} 900.1\right) 00000 L-{ }_{u}(900.1) \varepsilon \operatorname{to\varepsilon } \angle \eta=$

$$
\left(\frac{900 \cdot 0}{1-4900.1}\right) \text { ooct }-u^{(900.1) \varepsilon \operatorname{tacLt}}=0
$$

$$
\varepsilon \operatorname{tocLh} \$ \cdot d \quad \text { oOZ力 } \$=W
$$

$$
\begin{equation*}
900 \cdot 0 \text { io.d } \% \tau \cdot L=1 \tag{1!}
\end{equation*}
$$

$$
\text { Etor } \angle 力 \$=
$$

$$
\left(\frac{1-500 \cdot 1}{1-8 h^{500.1}}\right) s L \cdot 266 Z-{ }_{8 n}(500 \cdot 1) 000005=
$$

$$
\begin{aligned}
& \frac{+16972}{000002}=n^{900.1}
\end{aligned}
$$

