THE SCOTS COLLEGE Sydney

Extension One Mathematics

HSC Task 3

Weighting 20%

1st June 2009

Total marks – 33

• Attempt all questions.

General Instructions

- Working time 45 Minutes.
- Write using black or blue pen.
- Start a new page for every question
- Board-approved calculators may be used.
- All necessary working should be shown in every question.

Table of Standard Integrals provided at the end of the paper.

<u>QUESTION 1</u> (10 Marks)

a) The temperature of a cup of coffee varies according to the rate given by $\frac{dT}{dt} = -k(T - T_o), \text{ where } T \text{ is the temperature in degrees after elapsed time, } t \text{ (in minutes), and } T_0 \text{ is the temperature of the environment.}$

The cup, initially at $120^{\circ}C$, is kept in a cold chamber at $-20^{\circ}C$. After 3 minutes, the temperature of the cup drops down to $80^{\circ}C$.

i. Show that $T = T_o + Ae^{-kt}$ is a possible function that represents the variation of temperature with time for the cup. [1]

[3]

- ii. Find the values of *A* and *k*.
- iii. If the cup at $80^{\circ}C$ is now placed in a room whose temperature is $20^{\circ}C$, assuming that the value of *k* remains unchanged, find the temperature of the cup after a further 20 minutes. [2]
- b) A kite flying at a *constant* height of 40 *m* above the ground, is being dragged along by wind at a rate of 10 m/s. The kite is initially vertically above the ground. At what rate is the length of the string, tied to the kite, being released from the ground, increasing after 3 seconds. (Assume that the string remains straight). [4]

<u>QUESTION 2</u> (14 Marks) START A NEW PAGE

a) Prove the following by mathematical induction

$$2\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\dots\left(1-\frac{1}{n^2}\right) = \frac{n+1}{n} \quad \text{for all positive integers } n \ge 2.$$
[4]

b) Consider the series
$$\sum_{r=1}^{\infty} (\log_e x)^r$$
, where $x > 0$. [6]

i. Write down the first term, common ratio and the sum of *n* terms of the series.

ii. Find the range of values of x, such that a limiting sum exists for this series.

iii. Find the limiting sum if $x = \sqrt{e}$.

- c) Let T_n and S_n represent the n^{th} Term and the Sum of *n* terms respectively, of an Arithmetic Progression, with first term *a* and common difference d (a, $d \neq 0$). If T_{10} , T_4 and T_6 form consecutive terms of a Geometric Progression,
 - i. Show that $S_{10} = 0$. [2]
 - ii. Show that $S_6 + S_{12} = 0$ [2]

<u>QUESTION 3</u> (9 Marks) START A NEW PAGE

Gordon and Gabbie take a loan of \$500,000 from Community Bank, to buy a new house. The period of the loan is 30 years and interest is charged at the rate of 6% p.a. on the amount owing. Repayment is through a fixed monthly instalment of \$M, paid at the end of each month.

Let A_n be the amount owing at the end of the nth month, after the payment of the monthly instalment.

i. Show that at the end of the third month, the amount owing is given by

$$A_3 = 50000((1.005)^3 - M((1+1.005+1.005^2))$$
[2]

- ii. By first arriving at a general expression for A_n , find the value of M. [2]
- iii. Find the amount owing to the bank at the end of 4 years. [2]
- iv. At the end of the 4th year, the bank raises the interest rate to 7.2%. At the same time, Gordon and Gabbie decide to make fixed monthly payments of \$4200 to the bank. Find the time it would now take for the couple to completely pay off the loan. Express your answer in years and months.

END OF PAPER

Standard Integrals

$=\frac{1}{n+1}x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$
$=\ln x, x>0$
$=\frac{1}{a}e^{ax}, \ a\neq 0$
$=\frac{1}{a}\sin ax, a \neq 0$
$=-\frac{1}{a}\cos ax, a \neq 0$
$=\frac{1}{a}\tan ax, a \neq 0$
$=\frac{1}{a}\sec ax, a \neq 0$
$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$
$=\ln\left(x+\sqrt{x^2+a^2}\right)$

NOTE :
$$\ln x = \log_e x$$
, $x > 0$

Yr 12 Mathy Ext 1 lash : SOLUTIONS Question 1 Question 1 (a)(i) $T = T_0 + Ae^{-kt}$ (6) $\frac{dx}{dt} = 10 \text{ m/s}$ $\frac{dT}{dt} = -kAe^{-kt}$ 40 $\frac{dl}{dt} = ?$ $= -k(T-T_0)(-Ae^{-kt}=T-T_0)$ Hence T=To+Ae-kt is a possible solution $\int_{1}^{2} x^{2} + 40^{2}$ $l = \sqrt{2l^2 + 1600} \quad (2 > 0)$ (i) When t=0, T=120°C, To=-20°C $\frac{dl}{dx} = \frac{1}{2} (x^2 + 1600)^{-\frac{1}{2}} 2x$ $120 = -20 + Ae^{\circ}$ A = 140°G $= \frac{\chi}{\sqrt{\chi^2 + 1600}}$ When t= 3 minutes, T= 80°C 80 = -20 + 140 e $\frac{dL}{dt} = \frac{dx}{dt} \times \frac{dL}{dx}$ 100 = 140 e -3k $= 10 \times \frac{2}{\sqrt{\chi^2 + 1600}}$ When t= 3 seconds 2-30 :-3k= loge 5 dl 10× 30 $k = \frac{-1}{3} \log_{e} \frac{57}{7} = 0.112157 - ...$ V900+1600 = 10×30 ~ 0·112 (III) To = 20°C = 6 m/s at t=0, T= 80°C : A=60 80"= 20 + " 'Ae' -15xk t= 15 min. T= 20+60e when = 31.156 = 31.2°C

LEN wo ret and is true by all Therefore by the knowle of Matternatical Induction, Hence true for N. 16+1 FHZ = 1+n 7+7 = $=\frac{\kappa(\kappa+1)}{\kappa(\kappa+2)}$ (K- K+772+2) (1-1-2) -= $\frac{(1+\gamma)}{1} = \frac{(1+\gamma)}{1}$ $= \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$ (2 dats mad) (2(1+1) - 1 7 (-1) = 5++7 $\frac{1+\gamma}{7+\gamma} = (\frac{\tau(1+\gamma)}{7}-1)(\frac{\tau}{7}-1) - - (\frac{\tau}{7}-1)(\frac{\tau}{7}-1)(\frac{\tau}{7}-1) = - - (\frac{\tau}{7}-1)(\frac{\tau}{7}-1)(\frac{\tau}{7}-1)$ 1+7 = 1 refore proy = Edots $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} +$ 54602 : Assume Aue for n: h Hence tore for N: 1 音: 音vて = (キー1) と: SH7 L: n'ef ever sure : 1 costs (w) Question 2

$$S_{10} := \frac{10}{2} (2a+9a)$$

= 5 (2a+9a)
= 0 (:: 2a+9a) = 0)
(ii) $S_{6} + S_{12} = 0$
LHF = $\frac{4}{2} (2a+5a) + \frac{12}{2} (2a+11a)$
= 6a+15a + 12a+66d
= 18a+81d
= q (2a+9a)
= 0 (:: 2a+9d = 0)

$$\frac{Y_{1} 12}{4^{2} \text{ Extension 1 Mathematics}}{\frac{4^{2} \text{ Secsement Task 3 - Solutions}}{2}$$
(a) Ant borrowed = \$\$500,000
Interest Rate: 6% p.a.: 0.5% p.month: 0.005
Period: 30 yean = 360 months
Repayment: \$M per minth.
(i) An = Ant Owring at the end of nth month.
A₁: 500 000 (1.005) - M
A₂: [\$\frac{1}{5}00000 (1.005)^{2} - 1.005 M - M
- \$500000 (1.005)^{2} - 1.005 M - M
- \$500000 (1.005)^{3} - 1.005 M - M
= \$500000 (1.005)^{3} - M (1+1.005 + 1.005^{2})
(ii) A₃ = \$500000 (1.005)^{300} - M (1+1.005 + 1.005^{2} + ... + 1.00
M [$\frac{1}{1}(1.005^{300}-1)$] = \$500000 (1.005)^{360}
: M = $\frac{0.005 \times 500000 (1.005)^{360}}{1.005^{360}-1}$