# THE SCOTS COLLEGE Sydney 



# Extension One Mathematics HSC Task 3 

## Weighting 20\%

$7^{\text {th }}$ June 2011

Total marks - 33

- Attempt all questions.


## General Instructions

- Working time - 45 Minutes.
- Write using black or blue pen.
- Start a new page for every question
- Board-approved calculators may be used.
- All necessary working should be shown in every question.


## QUESTION 1 (8 Marks)


$P Q$ is the diameter of a circle with centre $O . P R$ is the tangent to the circle at $P$. The line QST intersects the circle at $S$ and $P R$ at $T$. The tangent to the circle at $S$ cuts $P R$ at $Y$. Let
a) Prove that
(you are not allowed to use $P Y=Y S$ ).
b) Prove that $P Y=Y S$.
c) Prove that $Y$ is the mid point of $P T$.

Prove the following by mathematical induction
is divisible by 9 for all $n \geq 1$.

QUESTION 3
(5 Marks)
START A NEW PAGE

A vessel is in the shape of an inverted, right cone, with an apex angle of $60^{\circ}$. Sand is being poured into the conical vessel at a constant rate of $48 \mathrm{~cm}^{3} / \mathrm{min}$.
a) Show that the radius of the sand in the cone at any time is - , where $h$ is the height of the sand in the vessel.
b) Find the rate at which the height of the sand in the vessel is increasing when the height is 12 cm .

## QUESTION 4

An ice cube tray is filled with water at a temperature of $15^{\circ} \mathrm{C}$. It is then placed in a freezer which has a constant temperature of $-10^{\circ} \mathrm{C}$. The water in the tray cools in the freezer at a rate that is proportional to the difference between the temperature of water, $W^{0} \mathrm{C}$, at any time, and the temperature of the freezer, $-10^{\circ} \mathrm{C}$, so that $W$ satisfies the equation

- , where $k$ is the constant of proportionality.
a) Show that
[2]
b) Hence show that
c) After 5 minutes, the temperature of the water in the tray is $5^{\circ} \mathrm{C}$.
i. Find the value of $k$ (to one decimal place)
ii. Find the time that it takes for the water to cool down to $-5^{\circ} \mathrm{C}$ (to the nearest minute).

Three mathematicians decide to invest $\$ 5000$ into PAL Trust Fund in order to award an annual scholarship of $\$ 500$ to a deserving Mathematics student. The investment earns an interest at the rate of $9 \%$ p.a., compounded monthly. The scholarship amount of $\$ 500$ is withdrawn at the end of each year after the monthly interest has been deposited.
a) Find the amount remaining in the investment at the end of the first year, after awarding the scholarship.
b) Let $A_{n}$ be the balance in the investment at the end of the $n^{\text {th }}$ year, after the withdrawal of the scholarship amount for the year. If $R=1.0075$, show that
c) Hence find the number of years for which the annual scholarship can be awarded (no scholarship is awarded if the balance in the investment falls below $\$ 500$ ).

## END OF PAPER

## Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \cos a x, \quad a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \tan \frac{x}{a}, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x &
\end{array}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

Extension 1 Mathematics Solutions
Questions TASK 3. JUNE 2011.

(i) $\angle Q P Y=90^{\circ}$ (line from centre to tangent is $\therefore \angle Q P S=90-\theta \perp$ at the point of contact) $\angle X S Q=\angle Q P S$ (alternate segment theorcul)

$$
=90-\theta
$$

$\angle Y S T=\angle X S Q$ (vertically opposite angle)

$$
\therefore \angle Y S T: 90-\theta .
$$

(ii) $\angle Q S P=90^{\circ}$ (angle un a semi-cucle is a st 6 )
$\therefore \angle P S T=90^{\circ}$ (QST is a st. Avi)

$$
\begin{aligned}
\therefore \angle P S Y & =\theta(\because \angle Y S T=90-\theta) \\
& =\angle S P Y
\end{aligned}
$$

$\therefore P y=s$ (equal sides opposite to equal angles of a $\Delta$ )
(iii) $\angle S T P=90-\theta$ (angle sum of $\triangle P S T$ )

$$
\therefore \angle Y S T=\angle S T Y
$$

$\therefore S Y=Y T$ (equal sides opposite to equal aples

$$
\therefore P Y=Y s=Y T \text { of a } \Delta \text { ) }
$$

$\therefore Y$ is the mid pt of PT.

Q是:
$10^{n}+3\left(4^{n+2}\right)+5$ is divisible by $q$ all $n \geqslant 1$
Step 1: prove true for $n=1$

$$
\begin{aligned}
10^{1}+3\left(4^{1+2}\right)+5 & =10+3(64)+5 \\
& =207
\end{aligned}
$$

which is dinsible by 9 .
Step L Assume true for $n=k$
ie $10^{k}+3\left(4^{k+2}\right)+5=9 p$ where pis a positive witepe
Step 3 Prove true for $n=k+1$
ie $10^{k+1}+3\left(4^{k+3}\right)+5=9 Q$ where $Q$ is a pritive unteph.
Lists: $10 \cdot 10^{k}+3\left(4 \cdot 4^{k+2}\right)+5$

$$
\begin{aligned}
& =10\left[10^{k}+3\left(4^{k+2}\right)+5\right]-18\left(4^{k+2}\right)-45 \\
& =10[9 P]-18\left(4^{k+2}\right)-45 \\
& =9\left[10 P-2\left(4^{k+2}\right)-5\right] \\
& =9 Q \text { where. } Q=10 P-2\left(4^{k+2}\right)-5
\end{aligned}
$$ must be a positive witeper as $P$ and $k$ are witepen).

Hence true for $n=k+1$
Step 4 : Therefore in the prinuple of mathemoncal unduchori, is is the for all $n \geqslant 1$

Extension 1 Mathematic' - Task 3
$7^{\text {th }}$ Pure 2011
SOLUTIONS
Q. 3.


$$
\frac{d V}{d t}=48 \mathrm{~cm}^{3} / \mathrm{min} .
$$

(i)
(ii)

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi \frac{h^{2}}{3} \cdot h \\
& =\frac{\pi h^{3}}{9} \\
\frac{d y}{d h} & =\frac{3 \pi h^{2}}{9} 2 \\
& =\frac{\pi h^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{d y}{d t} \times \frac{d h}{d y} \\
& =48 \times \frac{3}{\pi h^{2}} \\
\text { When } h & =12 \mathrm{~cm} \\
\frac{d h}{d t} & =48 \times \frac{3}{\pi(12)^{2}} \\
& =\frac{1}{\pi} \mathrm{~cm} / \mathrm{min} .
\end{aligned}
$$

Queston: 4 :
(i)

$$
\begin{aligned}
\frac{d}{d t}\left(w e^{k t}\right) & =e^{k t} \frac{d w}{d t}+w \frac{d}{d t} e^{k t} \\
& =e^{k t}[-k(w+10)]+w \cdot k e^{k t} \\
& =k e^{k t}[-w+10+w] \\
& =-10 k e^{k t} \text { as requied } \\
\therefore w e^{k t} & =-\int 10 k e^{k t} \\
& =-10 e^{k t}+c
\end{aligned}
$$

When $t=0, w=\$ 5$

$$
\begin{aligned}
& 15=-10+c \quad \therefore C=25 \\
& \therefore W e^{k t}=-10 e^{k t}+25 \div e^{k t} \\
& W=-10+25 e^{-k t} \\
& \text { or } W=25 e^{-k t}-10 .
\end{aligned}
$$

(iii) When $t=5 \mathrm{~min}, w=5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& (a) 5=25 e^{-5 k}-10 \\
& e^{-5 k}=\frac{15}{25}=3 / 5 \\
& k=\frac{\ln 3 / 5}{-5}=0.1 \quad(1 d p)
\end{aligned}
$$

(b) When $W=-5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& -5=25 e^{-k t}-10 \\
& 5=25 e^{-k t} \\
& e^{-k t}=1 / 5 \\
& t=\frac{\ln 1 / 5}{-k}=15.75 \mathrm{~min} \\
& \simeq 16 \mathrm{~min}
\end{aligned}
$$

Q. 5
$p=\$ 5000$

$$
\begin{aligned}
r & =9 \% \text { pa: } 0.75 \% \text { p. moth } \\
& =0.0075 \\
M & =\$ 500
\end{aligned}
$$

(i)

$$
\begin{aligned}
A_{1} & =5000(1.0075)^{12}-500 \\
& =\$ 4969.03
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& =\$ 500(1.0075)^{12}-500 \\
A_{2} & =\left[5000(1.0075)^{12}-500\right](1.0075)^{24}-500(1.0075)^{12}-500 \\
& =5000(1.0075)^{24}-500(1.0075)^{12}-500 \\
A_{3} & =5000(1.0075)^{36}-500(1.07 .
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
A_{n} & =5000(1.0075)^{12 n}-500(1.0075)^{12(n-1)}-\cdots-500\left(1.0075^{12}-501\right. \\
& =5000(1.0075)^{12 n}-500\left[1+1.0075^{12}+1.005^{24}+\cdots+1.0075^{126}\right. \\
& =5000(1.0075)^{12 n}-500\left[\frac{\left.1\left(1.0075^{12 n}-1\right)\right]}{}=5000 R^{12 n}-\frac{500\left[R^{12 n}-1\right]^{1.0075^{12}}-1}{R-1}\right. \\
\text { iii) } & A_{n}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) } \\
& 0=500(1.0075)^{12 n}-\frac{1.0075)^{124}+\frac{500}{1.0071^{12}-1}\left(1.0075^{12}-1\right.}{100} \\
& (1.0075)^{12 n}\left(1001-\frac{1}{1.0075^{12}-1}-10\right)=\frac{1}{(1.0075)^{12}-1} \\
& 1.0075^{12 n}=\frac{\frac{1}{(1.0075)^{12}-1}}{\frac{1}{(1.0075)^{12}-1}-10}=x \\
& 12 n=\frac{\ln x}{\ln 1.0075} \quad \therefore n=\frac{1}{12} \frac{\ln x}{\ln 1.0075} \\
& =31.02 \ldots \\
& \simeq 31 \text { years. }
\end{aligned}
$$

