THE SCOTS COLLEGE

MATHEMATICS EXTENSION I

YEAR 12 ASSESSMENT TASK 3

4TH JUNE 2012

GENERAL INSTRUCTIONS

- Working time 45 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your name, class teacher's name and the question number attempted

WEIGHTING

20%

TOTAL MARKS

OUESTION 2 CONTINUES ON THE NEXT PAGE

4 marks a) Use the principle of mathematical induction to show that $8^n - 7n + 6$ is divisible by 7 for all positive integral values of n. b) A certain rectangle, with its length double its width, is also a cyclic quadrilateral. i. Let the length of the rectangle be *y*. 1 mark Draw a diagram of the given information. Show that the radius of the circle, r, in terms of y is $\frac{y}{4}\sqrt{5}$ 2 marks ii. iii. If the length of the rectangle, y, is decreasing at a rate of 3cm per second, 3 marks calculate the rate the area of the circle is changing when the length of the

a) A particle in simple harmonic motion starts from a displacement of -6 units and takes eight seconds to travel to a displacement of 2 units. The particle oscillates between -6

QUESTION 2 - ANSWER IN A NEW BOOKLET

units and 2 units.

i. State the period of the particle 1 mark ii. Sketch the displacement–time graph for $0 \le t \le 24$ 3 marks iii. State the amplitude and centre of motion of the particle 2 marks iv. Write down an equation for the position of the particle x at time t seconds in the 2 marks form $x = a\cos(nt) + b$ where *a*, *b* and *n* are constants Hence, prove the particle moves in simple harmonic motion 2 marks v.

- - rectangle is 4cm

10 MARKS

17 MARKS

b) The motion of a particle is described by the acceleration equation

$$\frac{d^2x}{dt^2} = x$$

where x is the displacement of the particle from the origin in metres and t is time in seconds

i.	Init	tially the particle is at the origin travelling with a velocity of -3m/s.	3 marks
	Sho	ow that the velocity of the particle, in terms of x, is: $v = -\sqrt{x^2 + 9}$	
ii.	Ву	using the Standard Integrals Table, evaluate $\frac{d}{dx}\ln\left(x+\sqrt{x^2+9}\right)$	1 mark
iii.		nce, or otherwise, find a time when the particle is 4 metres to the left of the gin. Give your answer to the nearest second.	3 marks
	Q	QUESTION 3 – ANSWER IN A NEW BOOKLET 6 MARKS	<u> </u>
	-	n deposits \$20,000 in a savings account with 6% per annum interest calculated end of each month.	
	i.	Write an expression for the value of Morgan's deposit at the end of the third month.	1 mark
	ii.	From the fourth month Morgan decides to withdraw \$800 just after interest is calculated and he continues to withdraw \$800 every month thereafter.	3 marks
		Let B_n be the balance of Morgan's savings account at the end of the n^{th} \$800 withdrawal.	
		Show that $B_n = 20000(1.005)^{n+3} - 160000(1.005^n - 1)$	
i	iii.	Hence, how many times can Morgan withdraw \$800 from his account?	2 marks

END OF EXAM

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

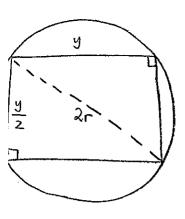
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

1) a) OProve true for
$$n=1$$

 $8-7+6=7$
Divisible by 7
 s -true for $n=1$
(2) Assume true for $n=k$:
 $8^{k}-7k+6=7M$ where M is an integer.
(3) Prove true for $n=k+1$
 $8^{k+1}-7(k+1)+6$
 $(8^{k})8-7k-7+6$ $8^{k}=7M+7k-6$
 $(8^{k})8-7k-7+6$ $8^{k}=7M+7k-6$
 $(8^{k})8-7k-1$
 $(7M+7k-6)8-7k-1$
 $56M+56k-48-7k-1$
 $56M+49k-49$
 $7(8M+7k-7)$
1. Divisible by 7
True for $n=k+1$
(4) Aince free for $n=1$ and $n=k+1$, -then true for $n=2$. Since free for $h=i$
and $n=k+1$ then true for $n=3$ and so for the for cell positive values
of n .

Q



ii)
$$y^{2} + \left(\frac{y}{2}\right)^{2} = (2r)^{2}$$

 $y^{2} + \frac{y^{2}}{4} = 4r^{2}$
 $\frac{5y^{2}}{4} = 4r^{2}$
 $\Gamma = \int \frac{5y^{2}}{16} = \frac{y}{4} \int \frac{5y}{16}$
 $A = \pi r^{2}$
 $A = \pi \left(\frac{5y^{2}}{16}\right)$
 $\frac{dA}{dy} = \frac{5\pi y}{8}$

$$= \frac{dy}{dt} \times \frac{dA}{dy}$$

$$y = 4$$
.
 $y = -\frac{15\pi}{2}$ cm²/s

(02) a) i) Period = 16 seconds.
ii)
$$\frac{2}{2}$$

 $\frac{2}{-2}$
 $\frac{2}{-4}$
 $\frac{2}{-4}$
iii) Amplitude = 4
Centre of motion = -2

iv)
$$x = a \cos(nt) + b$$

 $z = 4\cos(nt) - 2$
 $16 = \frac{2\pi}{n}$ $\therefore n = \frac{2\pi}{16} = \frac{\pi}{8}$
 $\therefore z = 4\cos(\frac{\pi}{8}t) - 2$
v) $v = -4\pi \sin(\frac{\pi}{8}t)$
 $= -\frac{\pi}{8}\sin(\frac{\pi}{8}t)$
 $a = -\frac{\pi^2}{16}\cos(\frac{\pi}{8}t)$
Note: $\frac{z+2}{4} = \cos(\frac{\pi}{8}t)$
 $a = -\frac{\pi^2}{64}(z+2)$
This is in the form $a = -n^2(z+A)$
 $\therefore SHM$.

$$\begin{array}{l} (22) \ b) \ a = z \\ i) \ t = 0, \ x = 0, \ v = -3 \\ \frac{d}{dx} \ \frac{1}{2}v^2 = z \\ \frac{1}{2}v^2 = \frac{x^2}{2} + C, \\ \frac{1}{2}(9) = 0 + C_1 \\ C_1 = \frac{9}{2} \\ \frac{1}{2}v^2 = \frac{x^2}{2} + \frac{9}{2} \\ v^2 = x^2 + \frac{9}{2} \\ v = \frac{1}{2}\sqrt{x^2 + 9} \\ v = \frac{1}{2}\sqrt{x^2 + 9} \\ \text{When } x = 0, \ v = -3 \\ -i, \ v = -\sqrt{x^2 + 9} \end{array}$$

ii)
$$\frac{d}{dz} \ln(z + \sqrt{z^2 + 9})$$

 $= \sqrt{z^2 + 3^2} = \sqrt{z^2 + 9}$
iii) $t = ?$ when $z = -4$
 $V = -\sqrt{z^2 + 9}$ i. $dt = \int \frac{-1}{\sqrt{z^2 + 9}} dz$
 $\frac{dz}{dt} = -\sqrt{x^2 + 9}$ i. $dt = \int \frac{-1}{\sqrt{z^2 + 9}} dz$
 $t = \int \frac{-1}{\sqrt{z^2 + 9}} dz$
 $t = -\ln(z + \sqrt{z^2 + 9}) + C_2$
 $O = -\ln(O + \sqrt{9}) + C_2$
 $C_2 = \ln(3)$
i. $t = -\ln(z + \sqrt{z^2 + 9}) + \ln(3)$
when $x = -4$, $t = ?$
 $t = -\ln(-4 + \sqrt{16 + 9}) + \ln 3$
 $= -\ln(1) + \ln 3$
 $t = \ln 3$
 $a = 1$ screed

$$\begin{array}{l} (03 \ a) \ i) \quad 20000 \ (1.005)^3 \\ ii) \ b_1 = 20000 \ (1.005)^5 - 800 (1.005) - 800 \\ b_2 = 20000 \ (1.005)^5 - 800 (1.005)^2 - 800 (1.005) - 800 \\ b_3 = 20000 \ (1.005)^3 - 800 \ (1.005)^2 - 800 \ (1.005)^2 - 800 \ (1.005)^2 - 800 \ (1.005)^2 + 1.005^{+1} \ (1.005^{+1} \$$

: Morgan can withdraw \$800 27 times.