THE SCOTS COLLEGE

MATHEMATICS EXTENSION I

YEAR 12 ASSESSMENT TASK 3

4TH JUNE 2012

GENERAL INSTRUCTIONS

- Working time -45 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your name, class teacher's name and the question number attempted
a) Use the principle of mathematical induction to show that $8^{n}-7 n+6$ is divisible by 7 4 marks for all positive integral values of n.
b) A certain rectangle, with its length double its width, is also a cyclic quadrilateral.
i. Let the length of the rectangle be y.

1 mark

Draw a diagram of the given information.
ii. Show that the radius of the circle, r, in terms of y is $\frac{y}{4} \sqrt{5}$

2 marks
iii. If the length of the rectangle, y, is decreasing at a rate of 3 cm per second, 3 marks calculate the rate the area of the circle is changing when the length of the rectangle is 4 cm
a) A particle in simple harmonic motion starts from a displacement of -6 units and takes eight seconds to travel to a displacement of 2 units. The particle oscillates between -6 units and 2 units.
i. State the period of the particle

1 mark
ii. \quad Sketch the displacement-time graph for $0 \leq t \leq 24$ 3 marks
iii. State the amplitude and centre of motion of the particle 2 marks
iv. Write down an equation for the position of the particle x at time t seconds in the form $x=a \cos (n t)+b$ where a, b and n are constants
v. Hence, prove the particle moves in simple harmonic motion

2 marks
b) The motion of a particle is described by the acceleration equation

$$
\frac{d^{2} x}{d t^{2}}=x
$$

where x is the displacement of the particle from the origin in metres and t is time in seconds
i. Initially the particle is at the origin travelling with a velocity of $-3 \mathrm{~m} / \mathrm{s}$.

Show that the velocity of the particle, in terms of x, is: $v=-\sqrt{x^{2}+9}$
ii. By using the Standard Integrals Table, evaluate $\frac{d}{d x} \ln \left(x+\sqrt{x^{2}+9}\right)$

1 mark
iii. Hence, or otherwise, find a time when the particle is 4 metres to the left of the

3 marks origin. Give your answer to the nearest second.

QUESTION 3 - ANSWER IN A NEW BOOKLET
6 MARKS
a) Morgan deposits $\$ 20,000$ in a savings account with 6% per annum interest calculated at the end of each month.
i. Write an expression for the value of Morgan's deposit at the end of the third month.
ii. From the fourth month Morgan decides to withdraw $\$ 800$ just after interest is calculated and he continues to withdraw $\$ 800$ every month thereafter.

Let B_{n} be the balance of Morgan's savings account at the end of the $n^{\text {th }}$ $\$ 800$ withdrawal.

Show that $B_{n}=20000(1.005)^{n+3}-160000\left(1.005^{n}-1\right)$
iii. Hence, how many times can Morgan withdraw $\$ 800$ from his account?

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

Q1) a) (1)Prove true for $n=1$

$$
8-7+6=7
$$

Divisible by 7
c- true for $n=1$
(2) Assume true for $n=k$:
$8^{k}-7 k+6=7 M$ where M is an integer.
(3) Prove the for $n=k+1$

$$
\begin{aligned}
& 8^{k+1}-7(k+1)+6 \\
& \left(8^{k}\right) 8-7 k-7+6 \quad 8^{k}=7 m+7 k-6 \\
& \left(8^{k}\right) 8-7 k-1 \\
& (7 m+7 k-6) 8-7 k-1 \\
& 56 m+56 k-48-7 k-1 \\
& 56 M+49 k-49 \\
& 7(8 m+7 k-7)
\end{aligned}
$$

\therefore Divisible by 7
True for $n=k+1$
(4) dAnce foe for $n=1$ and $n=k+1$, Hen tres for $n=2$. Since me for $h=1$ and $n=k+1$ then the far $n=3$ and sofarth for all positive values of n.

$$
=-3 \mathrm{~cm} / \mathrm{s}
$$

$$
=\frac{d y}{d t} \times \frac{d A}{d y}
$$

$$
\begin{aligned}
& \text { ii) } \begin{array}{l}
y^{2}+\left(\frac{y}{2}\right)^{2}=(2 r)^{2} \\
y^{2}+\frac{y^{2}}{4}=4 r^{2} \\
\frac{5 y^{2}}{4}=4 r^{2} \\
r=\sqrt{\frac{5 y^{2}}{16}}=\frac{y}{4} \sqrt{5} \\
A=\pi r^{2} \\
A=\pi\left(\frac{5 y^{2}}{16}\right) \\
\frac{d A}{d y}=\frac{5 \pi y}{8}
\end{array}, \$ \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =-3 \times \frac{5 \pi y}{8} \\
& y=4 \\
& =-\frac{15 \pi}{2} \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

Q2) a) i) Period $=16$ seconds
ii)

iii) Amplitude $=4$

Centre of motion $=-2$
iv)

$$
\begin{aligned}
& x=a \cos (n t)+b \\
& x=4 \cos (n t)-2 \\
& 16=\frac{2 \pi}{n} \quad \therefore n=\frac{2 \pi}{16}=\frac{\pi}{8} \\
& \therefore x=4 \cos \left(\frac{\pi}{8} t\right)-2
\end{aligned}
$$

v)

$$
\begin{aligned}
v & =-\frac{4 \pi}{8} \sin \left(\frac{\pi}{8} t\right) \\
& =-\frac{\pi}{2} \sin \left(\frac{\pi}{8} t\right) \\
a & =-\frac{\pi^{2}}{16} \cos \left(\frac{\pi}{8} t\right)
\end{aligned}
$$

Note: $\frac{x+2}{4}=\cos \left(\frac{\pi}{8} t\right)$

$$
a=-\frac{\pi^{2}}{64}(x+2)
$$

This is in the form $a=-n^{2}(x+A)$ \therefore SHA.

Q2) b) $a=x$
i) $t=0, x=0, v=-3$

$$
\begin{aligned}
& \frac{d}{d x} \frac{1}{2} v^{2}=x \\
& \frac{1}{2} v^{2}=\frac{x^{2}}{2}+C_{1} \\
& \frac{1}{2}(9)=0+C_{1} \\
& C_{1}=\frac{9}{2} \\
& \frac{1}{2} v^{2}=\frac{x^{2}}{2}+\frac{9}{2} \\
& v^{2}=x^{2}+9 \\
& v= \pm \sqrt{x^{2}+9}
\end{aligned}
$$

When $x=0, v=-3$

$$
\therefore v=-\sqrt{x^{2}+9}
$$

ii)

$$
\begin{aligned}
& \frac{d}{d z} \ln \left(x+\sqrt{x^{2}+9}\right) \\
& =\frac{1}{\sqrt{x^{2}+3^{2}}}=\frac{1}{\sqrt{x^{2}+9}}
\end{aligned}
$$

iii) $t=$? when $x=-4$

$$
\begin{aligned}
& v=-\sqrt{x^{2}+9} \\
& \frac{d x}{d t}=-\sqrt{x^{2}+9} \quad \therefore d t=\int \frac{-1}{\sqrt{x^{2}+9}} d x \\
& t=\int \frac{-1}{\sqrt{x^{2}+9}} d x \\
& t=-\ln \left(x+\sqrt{x^{2}+9}\right)+C_{2} \\
& 0=-\ln (0+\sqrt{9})+C_{2} \\
& C_{2}=\ln (3) \\
& \therefore t=-\ln \left(x+\sqrt{x^{2}+9}\right)+\ln (3)
\end{aligned}
$$

when $x=-4, t=$?

$$
\begin{aligned}
t & =-\ln (-4+\sqrt{16+9})+\ln 3 \\
& =-\ln (1)+\ln 3 \\
t & =\ln 3
\end{aligned}
$$

Qu
a) 1) $20000(1.005)^{3}$

$$
\text { ii) } \begin{aligned}
B_{1} & =20000(1.005)^{4}-800 \\
B_{2} & =20000(1.005)^{5}-800(1.005)-800 \\
B_{3} & =20000(1.005)^{6}-800(1.005)^{2}-800(1.005)-800 \\
B_{1} & =20000(1.005)^{7}-800(1.005)^{3}-800(1.005)^{2}-800(1.005)-800 \\
& =20000(1.005)^{7}-800\left(1.005^{3}+1.005^{2}+1.005+1\right] \\
\therefore B_{n} & =20000(1.005)^{n+3}-800\left[1.005^{n-1}+1.005^{n-2}+\cdots+1.005+1\right] \\
& =20000(1.005)^{n+3}-800\left[1\left(1.005^{n}-1\right)\right] \\
B_{n} & =20000(1.005)^{n+3}-160000\left(1.005^{n}-1\right)
\end{aligned}
$$

iii)

$$
\begin{aligned}
B_{n} & =20000(1.005)^{n}(1.005)^{3}-16000(1.005)^{n}+160000=0 \\
& =4000\left[(1.005)^{n}\left(5(1.005)^{3}-40\right)+40\right]=0 \\
(1.005)^{n} & =\frac{-40}{5(1.005)^{3}-40} \\
n & =\ln \left(\frac{-40}{5(1.005)^{3}-40}\right) \div \ln (1.005) \\
& =27.205
\end{aligned}
$$

\therefore morgan can withdraw $\$ 800 \quad 27$ timed.

