THE SCOTS COLLEGE

MATHEMATICS EXTENSION I

YEAR 12 ASSESSMENT TASK 3

$17^{\text {TH }}$ JUNE 2013

GENERAL INSTRUCTIONS

- Reading time -2 minutes
- Working time -45 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Section II

WEIGHTING

20\%

TOTAL MARKS

QUESTION 1-4 (MARKS AS INDICTAED)

- Answers to be recorded in the answer booklets provided.
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your name and teachers name and the question number attempted.
- Clearly indicate the booklet order if more than one booklet is used for a question. Eg) Book 1 of 2 and 2 of 2.

Adam plays a game of dice for a single player with two, 6-sided dice, numbers on each face with the numerals 1 to 6 . He wins if the sum of the two upper most faces on each dice after a role is 4,6 or 8 . Conversely, if he roles a sum of $2,3,5$ or 7 he records a loss. Any other sum of the two dice permits him to continue playing until he records a win or a loss.
a) Find the probability that Adam wins on his first throw of the dice;

1 mark
b) Show that the probability of Adam throwing the dice again is $\frac{5}{18}$;
c) Show that the probability that Adam wins on the second throw is $\frac{5}{18} \times \frac{13}{36}$;
d) Find the probability that Adam wins the game eventually.

2 marks
a) A spherical bubble is expanding so that its volume is increasing at $10 \mathrm{~mm}^{3} \mathrm{~s}^{-1}$. At what rate is the radius increasing when the surface area is $500 \mathrm{~mm}^{2}$?
b) The rate at which a body warms in air is proportional to the difference between its temperature B and the constant temperature B_{o} of the surrounding air, i.e.,

$$
\frac{d B}{d t}=k\left(B-B_{o}\right)
$$

Where t is the time in minutes and k is a constant.
i) Show that $B=B_{o}+A e^{k t}$, where A is a constant, is a solution of

$$
\frac{d B}{d t}=k\left(B-B_{o}\right)
$$

ii) For a particular body, when $t=0, B=5^{\circ} \mathrm{C}$ and when $t=20$,
$B=15^{\circ} \mathrm{C}$. Given $B_{o}=25^{\circ} \mathrm{C}$, find the temperature of the body after a further 30 minutes have elapsed. Give your answer to the nearest degree.
iii) Explain the behaviour of B as t becomes large.

Prove by Mathematical Induction that $3 n^{3}+6 n$ is divisible by 9 for all integers $n \geq 1$.

QUESTION 4 APPLICATIONS OF CALCULUS TO THE 9 MARKS PHYSICAL WORLD

An amount $\$ A$ is borrowed at $r \%$ per annum reducible interest, calculated monthly. The loan is to be repaid in equal monthly instalments of $\$ M$.

Let $R=\left(1+\frac{r}{1200}\right)$ and let $\$ B_{n}$ be the amount owing after n monthly repayments have been made.
a) Show that $B_{1}=A R-M$

1 mark
b) Show that $B_{3}=A R^{3}-M\left(R^{2}+R+1\right)$

1 mark
c) Show that $B_{n}=A R^{n}-M\left(\frac{R^{n}-1}{R-1}\right)$

Julie borrows \$900 000 at 6\% per annum reducible interest, calculated monthly. The loan is to be repaid in 360 equal monthly instalments.
d) Using the information provided in Parts a to c, show that the monthly instalment should be $\$ 5395.95$
e) With the $60^{\text {th }}$ repayment, Julie pays an additional $\$ 120000$ so this payment is $\$ 125$ 395.95. After this, repayments continue at $\$ 5395.95$ per month. How many more repayments will be needed to pay off the loan?

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

MATHEMATICS EXTENSION L.
year 12 assessment task 3.

a). P (win) $=13 / 36$
b). $P($ throwing again $)=P(9,10,11$ or 12$)$

$$
=10 / 36
$$

$$
=\frac{5}{18}
$$

$$
\begin{aligned}
\therefore P\left(\operatorname{\omega in} 2^{n \prime} \text { role }\right) & =P(A G A i N) \text { and } P(\omega \mid \omega) \\
& =\frac{5}{18} \times \frac{13}{36}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{13}{36}\left(1+\frac{5}{18}+\left(\frac{5}{18}\right)^{2}+\left(\frac{5}{18}\right)^{3}+\ldots+\left(\frac{5}{18}\right)^{n}\right) \\
& =\frac{13}{36}\left(\frac{1}{1-\frac{5}{18}}\right) \\
& =\frac{13}{36} \times \frac{18}{13} \cdots \\
& =\frac{1 / 2}{}
\end{aligned}
$$

Question 2.
a)

$$
\begin{aligned}
& \frac{d V}{d t}=10 \mathrm{~mm}^{3} s^{-1} \quad S A=500=4 \pi r^{2} \\
& \frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}
\end{aligned}
$$

Now:

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \quad \text { when } S A=500 \\
-\frac{d v}{d r} & =4 \pi r^{2} \\
\therefore 10 & =4 \pi r^{2}=\frac{500}{d t}=\frac{16}{r} \\
\therefore 10 & =4 \pi \times \frac{125}{r} \times \frac{d r}{d t} \\
10 & =500 \cdot \frac{d r}{d t} \\
\therefore \frac{d r}{d t} & =0.02 \mathrm{mms}^{-1}
\end{aligned}
$$

bi). Given $B=B_{0}+A e^{k t}$

$$
\begin{aligned}
& \frac{d B}{d t} \\
& \therefore k A e^{k t} \text { where } B-B_{0}=A e^{k t} \\
& \therefore\left(B-B_{0}\right) \quad \sqrt{d t}
\end{aligned}
$$

Hence $B=B_{0}+A e^{k t}$ is a solution of $\frac{d B}{d t}=k\left(B-B_{0}\right)$

QL. PAS QR.AAN 23 MIA $243 C D$.

