SECTION A

QUESTION 1

Marks
(a) Differentiate with respect to x :
(i) $e^{[2 x} \quad 4$
(ii) $x e^{x^{2}}$
(iii) $\sin ^{\square 1} 3 x$
(iv) $\log _{e} \cos ^{2} x$
(b) Find a primitive of
(i) $\frac{1}{2 x+3}$
(ii) $\frac{x+2}{x^{2}+4}$
(c) Evaluate 3

$$
\prod_{0}^{\square \cos x \square \sin x)^{2} d x}
$$

(a) A particle, moving in a straight line, starts from the origin with velocity $15 \mathrm{~m} / \mathrm{s}$. Its acceleration is given by $a=7 \square 4 t$ where t is the time in seconds.
(i) When does the particle come to rest?
(ii) How far has it travelled at that time ?
(b) A circular oil slick lies on the surface of a body of calm water. Its area is increasing at a rate of $500 \mathrm{~m}^{2}$ per hour. At what rate is its circumference increasing when the radius of the slick is 12.5 m ?
(c) (i) Show that one root of the equation

$$
e^{x} \square 2 \cos x \square 1=0
$$ lies between 0.5 and 1

(ii) Use Newton's Method once to find a better approximation than 0.75 for the root of the above equation.
(d) Find the equation of the normal to the curve $y=\log _{e} x^{2}$ at the point where $x=e$

SECTION B

QUESTION 3 (Start a new booklet)

C
(a) In the diagram above the chords AB and EC are parallel.

Copy the diagram onto your booklet.
Show that Π ADE $=\Pi$ BDC
(b) For the curve

$$
y=(x \square 2)^{2} \square 1
$$

(i) What is the largest positive domain for $f(x)$ to have an inverse function?
(ii) Find this inverse function, stating its Domain and Range.
(iii) Sketch the graphs of $f(x)$ and $f^{\square 1}(x)$ on the same axes.
(c) A particle, moving in a positive direction in a straight line, has acceleration
(i) Find the velocity of the particle when it is 2 cm from the origin.
(ii) Find an expression for the particle's displacement with respect to time.
(a) (i) Show that $\tan ^{\square 1} x+\tan \frac{\square 1 \square}{\square} \square \bar{\square} \square=\frac{\square}{2}$
(b)

In the diagram above AB is a diameter of a circle with centre O and radius r.
The chords AC and DB each make an angle \varnothing with AB. The area between the chords is $\frac{3}{4}$ of the area of the circle. Copy the diagram into your booklet.
(i) Show that $2 \theta+\sin 2 \theta=\frac{3 \square}{4}$
(ii) Join CO and OD and show that CD is a diameter of the circle.
(iii) The point C moves along the circumference at a constant rate, moving through one quadrant in 15 minutes. If A is the total area of the two triangles ACO and DBO, find, in terms of r, the rate at which A is changing when $\varnothing=\frac{\square}{6}$
(iv) Find the maximum value of A and the value of \varnothing at that time.
(c) (i) Sketch the curve $y=3 \sin 2 x \quad 0 \square x \square \square$
(ii) The area between the curve $y=3 \sin 2 x, x=0$ and $x=\sqcup$ is rotated about the x axis. Find, in terms of \sqcup, the volume of the solid generated.

SECTION C

QUESTION 5 (Start a new booklet)

(a) If $\tan ^{\square^{1}} x=\frac{\square}{6}$, find the value of $\tan \frac{\square 1}{\square_{1}} \frac{2 x}{\square x^{2}} \square$
(b) Find $\lim _{x \rrbracket 0}(\operatorname{cosec} \mathrm{x}-\cot \mathrm{x})$
(c) Evaluate and simplify: $\quad \frac{d}{d x} \square^{\sin } \square \frac{2 x}{3} \square$
(d)

The chords CD and EF each subtend an angle of 90° at the centre of the circle. Show that the chords DE and CF meet at right angles.
(e) Use the substitution $u=\tan x$ to evaluate

$$
\square_{0}^{\frac{\square}{4}} \frac{d x}{9 \cos ^{2} x+25 \sin ^{2} x}
$$

(a) Show by Mathematical Induction that

$$
\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\text { पार }+\frac{1}{4 n^{2} \square 1}=\frac{n}{2 n+1} \quad \text { for all } \mathrm{n} \geq 1
$$

(b)

The graph above is of the function $y=A \cos ^{\square 1} B x$ where A and B are constants.
(i) Find the values of A and B .
(ii) Find the exact area of the shaded region.

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2002
HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 3

Mathematics
 Extension 1

Sample Solutions

Question I
(a)
(i) $\frac{d\left(e^{-2 x}\right)}{d x}=-2 e^{-2 x}$
(ii) $\frac{d\left(x e^{x^{2}}\right)}{d x}=e^{x^{2}}+x\left(2 x e^{x^{2}}\right)=e^{x^{2}}\left(1+2 x^{2}\right)$
(iii) $d\left(\frac{\left.\sin ^{-1} 3 x\right)}{d x}=\frac{3}{\sqrt{1-9 x^{2}}}\right.$
(iv) $\ln \left(\cos ^{2} x\right)=2 \ln \cos x$

$$
\therefore \frac{d\left(\frac{2 \ln \cos x)}{d x}=2 \cdot \frac{(-\sin x)}{\cos x}=-2 \tan x\right.}{d x}=\frac{1}{x}
$$

(b) (i) $\int \frac{1}{2 x+3} d x=\frac{1}{2} \int \frac{2 d x}{2 x+3}=\frac{1}{2} \ln |2 x+3|+c$
(ii)

$$
\begin{aligned}
\int \frac{x+2}{x^{2}+4} d x & =\int \frac{x}{x^{2}+4} d x+\int \frac{2}{x^{2}+4} d x \\
& =\frac{1}{2} \int \frac{2 x}{x^{2}+4} d x+\tan ^{-1}\left(\frac{x}{2}\right)+C \\
& =\frac{1}{2} \ln \left(x^{2}+4\right)+\tan ^{-1}\left(\frac{x}{2}\right)+C
\end{aligned}
$$

(C)

$$
\begin{aligned}
\int_{0}^{\pi / 2}(\cos x-\sin x)^{2} d x & =\int_{0}^{\pi / 2}\left(\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x\right) d x \\
& =\int_{0}^{\pi / 2}(1-\sin 2 x) d x \\
& \left.=x+\frac{1}{2} \cos 2 x\right]_{0}^{\pi / 2} \\
& =\left(\frac{\pi}{2}+\frac{1}{2} x-1\right)-\left(0+\frac{1}{2}\right) \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

(2) (a) $t=0, x=0, v=15$

$$
a=7-4 t
$$

$$
\begin{array}{rlrl}
\text { (i) } v=\int a d t=7 t-2 t^{2}+c & \text { (ii) } & \text { distance }=\int_{0}^{5}\left(7 t-2 t^{2}+15\right) d t \\
\therefore v=7 t-2 t^{2}+15 & & \left.=\frac{7}{2} t^{2}-\frac{2}{3} t^{3}+15 t\right]_{0}^{5} \\
v=0 \Rightarrow 2 t^{2}-7 t-15=0 & & =\frac{7}{2} \times 25-\frac{2}{3} \times 125+15 \times 5-0 \\
& (2 t+3)(t-5)=0 & & =
\end{array}
$$

(b) $\quad A=\pi r^{2}$

$$
\begin{aligned}
\frac{d A}{d t}=500 & =\frac{d A}{d r} \times \frac{d r}{d t} \\
& =2 \pi r \times \frac{d r}{d t} \\
500 & =2 \pi \times 12.5 \frac{d r}{d t} \\
\frac{d r}{d t} & =\frac{500}{25 \pi}=
\end{aligned}
$$

$\therefore \quad C=2 \pi r$

$$
\frac{d c}{d t}=2 \pi \frac{d r}{d t}=
$$

(c) (i) $f(x)=e^{x}-2 \cos x-1, f$ is a continuas function

$$
f(0.5)=e^{0.5}-2 \cos 0.5-1 \doteqdot-1.11 \quad \text { [Remember to use RADIAWS] }
$$

$$
f(1)=e-2 \cos 1-1 \equiv 0.64>0
$$

$\therefore f(1) \times f(0.5)<0$, so with f iontinuous $f(c)=0$ with $0.5 \lll 1$
(ii) $f^{\prime}(x)=e^{x}+2 \sin x$

$$
\begin{aligned}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} & =0.75-\frac{e^{0.75}-2 \cos 0.75-1}{e^{0.75}+2 \sin 0.75} \\
& \doteqdot 0.85
\end{aligned}
$$

(2).(d) $y=\log _{e} x^{2}=2 \log _{e} x$

$$
x=e \quad y=2 \ln e=2
$$

$$
y^{\prime}=\frac{2}{x} \Rightarrow \text { at } x=e \quad y^{\prime}=\frac{2}{e}
$$

$$
\therefore m_{1}=-\frac{e}{2}
$$

$$
\therefore y-z=-\frac{e}{2}(x-e)
$$

$$
\therefore 2 y-4=-e x+e^{2}
$$

$$
\therefore e x+2 y+e^{2}-4=0
$$

(3)
(a)

$A B C E$ is an isosceles trapezium
$\angle E+\angle B=180^{\circ}$ (cyclic quad)
$\angle C+\angle=180^{\circ} \quad$ (co-interior)
$\therefore \angle E=\angle C$
$\therefore A E=B C$
$\therefore \angle B D C=\angle A E$ (equal chord, subtend equal angler at the circumference.

(i) $x \geqslant 2$
(ii) $f: x \geqslant 2, y \geq 1$

3(c) $t=0, v \geq 0$

$$
x=0
$$

$$
a=-\frac{1}{2} e^{-x}
$$

$$
d\left(\frac{\left.\frac{1}{2} v^{2}\right)}{d x}=-\frac{1}{2} e^{-x}\right.
$$

$$
\frac{1}{2} v^{2}=\frac{1}{2} e^{-x}+c
$$

$$
v^{2}=e^{-x}+c_{1}
$$

$$
\therefore c_{1}=0 \Rightarrow v^{2}=e^{-x}
$$

$$
(v \neq 0) \quad \therefore \quad v=e^{-x / 2} \quad \text { (positive squave root) }
$$

(i) $x=2 \Rightarrow v=e^{-1}=\frac{1}{e} \mathrm{~cm} / \mathrm{s}$
(ii) $\quad v=e^{-x / 2}$

$$
\begin{aligned}
\therefore \frac{d x}{d t}=e^{-x / 2} \Rightarrow \frac{d t}{d x} & =e^{x / 2} \\
t & =\frac{1}{2} e^{x / 2}+c_{2} \\
0 & =\frac{1}{2}+c_{2} \\
\therefore t & =\frac{1}{2}\left(e^{x / 2}-1\right) \\
\therefore e^{x / 2} & =2 t+1 \\
\therefore x / 2 & =\ln (2 t+1) \\
\therefore x & =2 \ln (2 t+1)
\end{aligned}
$$

(4) (a) For $x>0 \quad \tan ^{-1}(x)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}$

```
Let }f(x)=\mp@subsup{\operatorname{tan}}{}{-1}x+\mp@subsup{\operatorname{tan}}{}{-1}\frac{1}{x
```

$\therefore f^{\prime}(x)=\frac{1}{1+x^{2}}+\left(-\frac{1}{x^{2}}\right) \frac{1}{1+\frac{1}{x^{2}}}=\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}=0, x>0$
$\therefore f(x)=k$, constant
$\begin{aligned} f(1) & =k \\ & =\tan ^{-1}(1)+\tan ^{-1}(1)=2 \times \frac{\pi}{4}=\frac{\pi}{2} \quad\left[\begin{array}{l}n B \text { if } x<0 \\ \tan ^{-1} x+\tan ^{-1} \frac{1}{x}=\frac{-\pi}{2}\end{array}\right]\end{aligned}$
$\therefore \tan ^{-1} x+\tan ^{-1} \frac{1}{x}=\frac{\pi}{2}, \quad x>0$

$$
\begin{aligned}
& \text { 4(b) } \\
& A C \| D B \\
& 2\left(r^{2} \phi+\frac{1}{2} r^{2} \sin 2 \phi\right)=\frac{3 \pi}{4} r^{2} \\
& \therefore 2 \phi+\sin 2 \phi=\frac{3 \pi}{4} \quad Q E D \\
& \text { (ii) } \angle A O D=2 \phi \text { (angle at the centre) } \\
& \triangle A O C=\frac{1}{2} r^{2} \sin (\pi-2 \phi) \\
& =\frac{1}{2} r^{2} \sin 2 \phi \\
& \therefore \angle D O B=\pi-2 \& \text { (straight line } A B \text {) } \\
& \therefore \angle C O B+\angle D O B=\pi \\
& \therefore C, O, D \text { are collinear } \\
& \therefore \text { CD is a diameter. } \\
& \text { (iii) } A=2 \times \frac{1}{2} r^{2} \sin (\pi-2 \phi) \\
& =r^{2} \sin 2 \phi \\
& \frac{d A}{d t}=r^{2} \cos 2 \phi \times 2 \frac{d \phi}{d t} \quad \text { (chain } \begin{array}{c}
\text { rule) }
\end{array} \\
& =2 r^{2} \cos 2 \dot{\phi} \frac{d \phi}{d t} \\
& \angle C O B=2 \phi \\
& \therefore 2 \frac{d \phi}{d t}=\pi / 2 / 15 \mathrm{rads} / \mathrm{min} \\
& \therefore \frac{d \theta}{d t}=\pi / 60 \mathrm{rads} / \mathrm{min} \\
& r=\frac{\pi}{6} \Rightarrow \frac{d A}{d t}=2 r^{2} \cos \frac{\pi}{3} \cdot \frac{\pi}{60} \\
& =\frac{r^{2} \pi}{60} \text { units/ } \min \\
& \text { (iv) } \frac{d A}{d \phi}=2 r^{2} \cos 2 \phi \text {. So } \frac{d A}{d \phi}=0 \Rightarrow \cos 2 \phi=0 \\
& \frac{d^{2} A}{d \phi t}=-4 r^{2} \sin 2 \phi \\
& \phi=\frac{\pi}{4} \quad \frac{d^{2} A}{d \theta^{2}}<0 \quad \therefore \max
\end{aligned}
$$

(4)(b) (iv) A is max at $\theta=\frac{\pi}{4}$

$$
\begin{aligned}
A & =r^{2} \sin \frac{\pi}{2} \\
& =r^{2} . \quad \text { unit }^{2}
\end{aligned}
$$

(c) (i) $y=3 \sin 2 x$

(ii) $\quad V=\pi \int_{0}^{\pi} 9 \sin ^{2} 2 x d x$

$$
\begin{aligned}
& =\frac{9 \pi}{2} \int_{0}^{\pi} 2 \sin ^{2} 2 x d x=\frac{9 \pi}{2} \int_{0}^{\pi}(i-\cos 4 x) d x \\
& =\frac{9 \pi}{2}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\pi} \\
& =\frac{9 \pi}{2}[(\pi-0)-(0)]=\frac{9 \pi^{2}}{2} \text { unin }^{3}
\end{aligned}
$$

$$
\text { (5) (a) } \tan ^{-1} x=\frac{\pi}{6} \Rightarrow x=\tan \pi / 6=1 / \sqrt{3}
$$

$$
\begin{aligned}
\therefore \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{2 / \sqrt{3}}{1-\frac{1}{3}}\right)=\tan ^{-1}\left(\frac{2 / \sqrt{3}}{2 / 3}\right) & =\tan ^{-1}(\sqrt{3}) \\
& =\pi / 3
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$
$=\operatorname{corec} x-\cot x \times \frac{\operatorname{cosec} x+\cot x}{\operatorname{cosec} x+\cot x}$
$=\frac{\operatorname{cosec}^{2} x-\cot ^{2} x}{\operatorname{cosec} x+\cot x}=\frac{1}{\operatorname{cosec} x+\cot x}$

$$
\begin{aligned}
& =\frac{1}{\operatorname{cosec} x+\frac{1}{\tan x}} \begin{array}{l}
=\frac{\tan x}{\tan x \operatorname{cosec} x+1}
\end{array} \begin{array}{l}
\therefore \lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x) \\
=\lim _{x \rightarrow 0} \frac{\tan x}{\tan x \operatorname{cosec} x+1} \\
=\frac{0}{0+1} \\
=0
\end{array}
\end{aligned}
$$

(5) (c) $d\left(\frac{\sin ^{-1}\left(\frac{2 x}{3}\right)}{d x}\right)=\frac{2}{3} \times \frac{1}{\sqrt{1-\frac{4 x^{2}}{9}}}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{3}{\sqrt{9-4 x^{2}}} \\
& =\frac{2}{\sqrt{9-4 x^{2}}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \angle O C D=45^{\circ} \quad(\text { isosceles } \triangle) \\
& \angle O C F=x \\
& \therefore \angle E D O=x \quad(\triangle O D E \equiv \triangle O C F) \\
& \therefore \angle X C D=45+x \\
& \angle C D X=45-x \\
& \therefore \angle D \times C=90^{\circ} \\
& \therefore C F \perp D E
\end{aligned}
$$

(e) $\int_{0}^{\pi / 4} \frac{d x}{9 \cos ^{2} x+25 \sin ^{2} x}$

$$
=\int_{0}^{\pi / 4} \frac{\sec ^{2} x d x}{9+25 \tan ^{2} x} \quad \begin{aligned}
& u=\tan x \\
& \therefore x=0 \Rightarrow u=0 \\
& x=\pi / 4 \Rightarrow u=1
\end{aligned}
$$

$=\int_{0}^{1} \frac{d u}{9+25 u^{2}}$

$$
\begin{aligned}
=\frac{1}{25} \int_{0}^{1} \frac{d u}{\frac{9}{25}+u^{2}} & =\frac{1}{25} \times \frac{5}{3} \tan ^{-1}\left(\frac{5 u}{3}\right. \\
& =\frac{1}{15} \tan ^{-1}\left(\frac{5}{3}\right)
\end{aligned}
$$

$$
\div 0.06869
$$

(6) (a)

$$
\frac{1}{3}+\frac{1}{15}+\cdots+\frac{1}{4 n^{2}-1}=\frac{n}{2 n+1} \quad n \geq 1
$$

Test $n=1$

$$
\begin{aligned}
& \text { CHS }=\frac{1}{3} \\
& \text { RUS }=\frac{1}{2 \times 1+1}=\frac{1}{3}
\end{aligned}
$$

$$
\text { True for } n=1
$$

Assume true for $n=k$

$$
\text { u. } \frac{1}{3}+\frac{1}{15}+\cdots+\frac{1}{4 k^{2}-1}=\frac{k}{2 h+1} \quad-(*)
$$

NTP true for $n=k+1$
u. $\frac{1}{3}+\frac{1}{15}+\cdots+\frac{1}{4 k^{2}-1}+\frac{1}{4(u+1)^{2}-1}=\frac{k+1}{2(u+1)+1}=\frac{k+1}{2 k+3}$

$$
\text { LAS }=\frac{1}{3}+\frac{1}{15}+\cdots+\frac{1}{4 k^{2}-1}+\frac{1}{4(n+1)^{2}-1}
$$

$$
=\frac{k}{2 u+1}+\frac{1}{4(4+1)^{2}-1} \quad \text { from (*) }
$$

$$
=\frac{k}{2 u+1}+\frac{1}{(2 u+3)(2 u+1)}
$$

$$
=\frac{k(2 u+3)+1}{(2 u+1)(2 u+3)}
$$

$$
=\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)}=\frac{(k+1)(2 k+1)}{(2 k+1)(2 k+3)}
$$

$$
=\frac{k+1}{2 k+3}
$$

$$
=\text { RUS }
$$

$$
\therefore \text { If true for } n=k \Rightarrow \text { true for } n=k+1
$$

$$
\therefore \text { By the principle of mathematical induction then }
$$

$$
\frac{1}{3}+\frac{1}{15}+\cdots+\frac{1}{4 n^{2}-1}=\frac{n}{2 n+1} \text {, for } n \geq 1
$$

(b) (b) $\quad y=A \cos ^{-1} B_{x} \quad \cos ^{-1}(0)=\frac{\pi}{2}$

$$
\therefore A=2
$$

$$
\Rightarrow y=2 \cos ^{-1} B x
$$

$$
\begin{array}{r}
(-3,0) \\
0=2 \cos ^{-1}(-3 B)
\end{array}
$$

$$
\therefore \cos ^{-1}(-3 B)=0
$$

$$
\pi=\cos ^{-1}(3 B)
$$

$$
-3 B=\cos O=1
$$

$$
3 B=\cos \pi
$$

$$
B=-\frac{1}{3}
$$

$$
y=2 \cos ^{-1}\left(-\frac{x}{3}\right)=2 \pi-2 \cos ^{-1}(x / 3)
$$

$$
\begin{aligned}
& =\int_{\pi}^{2 \pi}-3 \cos \left(\frac{x}{2}\right) d x \\
& =\left[-6 \sin \frac{x}{2}\right]_{\pi}^{2 \pi} \\
& =-6\left(\sin \pi-\sin \frac{\pi}{2}\right) \\
& =6
\end{aligned}
$$

\therefore shaded area $=6 \pi-6$ sq.units

