QUESTION 1.

2

(a) Find a primitive of
$$\frac{1}{\sqrt{1-x^2}}$$
. 1

(b) Evaluate
$$\int_{0}^{\ln 5} e^{-x} dx$$
 2

(c) Find
$$\lim_{h \to 0} \frac{\sin \frac{h}{2}}{h}$$
 1

(d) A box contains 5 red marbles and 4 white marbles.Three marbles are drawn in succession without replacement,What is the probability that any two marbles are red and one is white?

(e) The sector *OAB* of a circle centre *O* and radius *r* has an area of $\frac{3\pi}{4}$ cm². 2 If the arc *AB* subtends an angle of $\frac{\pi}{6}$ at *O*, find the length of the arc *AB*.

(f) If
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) + \tan^{-1}\left(1\right) = k\pi$$
 (where k is rational) 2

Find the value of *k*.

(g) Find
$$\int \frac{\ln 3x}{x} dx$$
, using the substitution $u = \ln 3x$.

- (a) Differentiate the following with respect to *x*.
 - (i) $x \cos x$
 - (ii) $\log_e(\cos 5x)$

(iii)
$$\tan^{-1}\left(\frac{x}{3}\right)$$

- (iv) $e^{\tan x}$
- (v) $\left\{ (1 + \cos^{-1}(3x)) \right\}^3$

(i)
$$x^2 e^{2x^3 + 1}$$

(ii)
$$\frac{5}{4+x^2}$$

(iii)
$$\frac{x^2}{x^3+7}$$

(iv)
$$-\sin(\pi - x)$$

8

TION	3. Use a <i>separate</i> Writing Booklet.	Marks
choice	e is equally likely, what is the probability of choosing	2
(i)	In how many ways can the numbers 1, 2, 3, 4, 5, 6 be arranged around a circle?	3
(ii)	How many of these arrangements have at least two even numbers together?	
(i)	Show that the function $f(x) = x^2 + e^{-\frac{1}{2}x} - 5$ has a root between -2 and -1 .	4
(ii)	Taking $x = -2$ as a first approximation, apply Newton's method once, to show that the root of $f(x) = 0$ is	
	approximately $-\frac{10}{e+8}$.	
(i)	Show that $\frac{1+x}{1-x} = -1 + \frac{2}{1-x}$.	3
(ii)	Hence find $\int \frac{1+x}{1-x} dx$	
	-	2
	In cho choice just or (i) (i) (i) (i) (i) (i) (i) (i) Write of	 In choosing three letters from the word PROBING, and assuming each choice is equally likely, what is the probability of choosing just one vowel? (i) In how many ways can the numbers 1, 2, 3, 4, 5, 6 be arranged around a circle? (ii) How many of these arrangements have at least two even numbers together? (i) Show that the function f(x) = x² + e^{-1/2x} - 5 has a root between -2 and -1. (ii) Taking x = -2 as a first approximation, apply Newton's method once, to show that the root of f(x) = 0 is approximately - 18/e+8.

- Consider the curves $y = \sin x$ and $y = \cos 2x$. (a)
 - (i) Sketch the graphs of the two curves on the same axes, in the domain $\frac{-\pi}{2} \le x \le \frac{\pi}{6}$.
 - Show that the curves intersect at $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{6}$. (ii)
 - Hence find the exact area bounded by the two curves. (iii)

(b) Consider the function
$$f(x) = 3\sin^{-1}\left(\frac{x}{2}\right)$$
. 3

- Evaluate f(2). (i)
- State the domain and range of y = f(x). (ii)
- Sketch the graph of y = f(x). (iii)

(c) Find the exact value of
$$\tan\left[2\tan^{-1}\left(-\frac{1}{2}\right)\right]$$
. 3

- The function g(x) is given by $g(x) = \cos^{-1} x + \sin^{-1} x$, $0 \le x \le 1$. (d)
 - Find g'(x). (i)
 - Sketch the graph of y = g(x). (ii)

5

Use a separate Writing Booklet

(a) Consider the function
$$f(x) = x \sin^{-1}(x^2)$$
.

- (i) State the domain and range of f(x).
- (ii) Find f'(x).
- (iii) Show that there is a horizontal inflexion at the origin.
- (iv) What is the slope of the tangent at x = 1.
- (v) Sketch the curve which represents f(x).

(b) (i) Show that
$$\int \frac{x}{\sqrt{x^2 + 2x - 3}} dx = \int \frac{x}{\sqrt{(x+1)^2 - 4}} dx$$
. 3

(ii) Using the substitution
$$2 \sec u = x + 1$$
, find $\int \frac{x}{\sqrt{x^2 + 2x - 3}} dx$

(c) The curve
$$y = \frac{1}{\sqrt{1+x^2}}$$
 is rotated about the *x*-axis. 3

Find the volume of the solid enclosed between $x = \frac{1}{\sqrt{3}}$ and $x = \sqrt{3}$.

QUESTION 6.

Use a separate Writing Booklet

(a) Evaluate
$$\int_{0}^{\sqrt{2}} x \sqrt[3]{x^2 + 1} dx$$
 - using the substitution $u = x^2 + 1$. 3
Answer in exact form.

- (b) Consider the equation $\cos 3x = \sin x$
 - (i) Show that $\cos\left(\frac{\pi}{2} A\right) = \sin A$
 - (ii) Hence, or otherwise, find the general solution of the equation $\cos 3x = \sin x$.

(c) (i) Show that
$$\frac{d}{dx}\tan^3 x = 3\sec^4 x - 3\sec^2 x$$
.

(ii) Using (i) or otherwise, evaluate
$$\int_{0}^{\overline{4}} \sec^{4} x \, dx -$$

(d) Show that the exact value of
$$\int_{0}^{\frac{\pi}{6}} \sin^2 x \, dx = \frac{2\pi - 3\sqrt{3}}{24}$$

3

4

Marks

THIS IS THE END OF THE PAPER

$$-1 - 2cc_{3} = x + 1 + 3$$
(1) (a) $\int \frac{1}{\sqrt{1-x^{2}}} dx = s_{1}n^{-1}x + c$
(b) $\int_{0}^{1} \frac{ln^{5}}{e^{-x}} dx = -e^{-x} \int_{0}^{1} \frac{ln^{5}}{e^{-x}} e^{0} \int \frac{ln^{5}}{e^{-x}} e^{-\frac{ln^{5}}{2}} e^{-\frac{ln^{5}}{2}} e^{-\frac{ln^{5}}{2}} e^{-\frac{ln^{5}}{2}} = -\frac{le^{-\frac{ln^{5}}{2}}}{1 - \frac{1}{5}} = \frac{1}{5}$
(c) $\lim_{h \to 0} \frac{s_{1}n\frac{b}{2}}{h} = \frac{1}{2} \lim_{h \to 0} \frac{s_{1}n\frac{b}{2}}{\frac{ln^{5}}{2}} \left(\lim_{u \to 0} \frac{s_{1}nu}{u} = 1 \right)$
 $= \frac{1}{2} \times 1$
 $= \frac{1}{2}$

(d) 5R 4W

$$(f) \quad (0s''(\frac{\sqrt{3}}{2}) + tan''(1) = \frac{\pi}{6} + \frac{\pi}{4} = \frac{10\pi}{24} = \frac{5\pi}{12}$$

$$\frac{1}{k} = \frac{5}{12}$$

$$(9) \int \frac{\ln 3x}{x} dx \qquad u = \ln 3x$$

$$= \int \ln 3x \times \frac{dx}{x}$$

$$= \int \ln 3x \times \frac{dx}{x}$$

$$= \int u du = \frac{1}{2}u^{2} + C$$

$$= \frac{1}{2}\ln^{2} 3x + C$$

$$(2) (a) (i) \frac{d(x \cos x)}{dx} = x(-\sin x) + (1)\cos x$$

$$(ii) \frac{d(\ln(\cos x))}{dx} = \cos x - x\sin x$$

$$(ii) \frac{d(\ln(\cos x))}{dx} = \frac{1}{x} - 5\sin x$$

$$= -5\sin x - 5\sin x$$

$$= -5\tan x$$

$$(iii) \frac{d(\tan^{-1}(\frac{x}{3}))}{dx} = \frac{1}{3} \times \frac{1}{1+(\frac{x}{3})^{2}} = \frac{1}{3} \times \frac{9}{9+x^{2}}$$

$$(iv) \frac{d(\tan^{-1}(\frac{x}{3}))}{dx} = \sec^{-2}x e^{\tan x}$$

$$= \frac{3}{9+x^{2}}$$

$$(v) \frac{d((1+\cos^{-1}(5x)))}{dx} = \sec^{-2}x e^{\tan x}$$

$$= -9((1+\cos^{-1}(5x))^{2})$$

$$2(b) \quad (i) \int x^{2} e^{2x^{3} + i} dx$$

$$= \frac{1}{6} \int (6x^{2}) e^{2x^{3} + i} dx \qquad \left[v \cdot \theta \cdot d \left(\frac{2x^{3} + i}{2x^{3}} \right) = 6x^{2} \right]$$

$$= \frac{1}{6} e^{2x^{3} + i} + C$$

$$(ii) \int \frac{5}{4 + x^{2}} dx = \frac{5}{2} \int \frac{2}{4 + x^{2}} dx$$

$$= \frac{5}{2} \tan^{-1} \left(\frac{x}{2} \right) + C$$

$$(iii) \int \frac{x^{2}}{x^{3} + 7} dx = \frac{1}{3} \int \frac{3x^{2}}{x^{3} + 7} dx = \frac{1}{3} \ln \left(x^{3} + 7 \right) + C$$

$$(iv) - \sin(\pi \cdot x) = -\sin x$$

$$\int -\sin x dx = \cos x + C$$

$$(3) (a) PRBN IG$$

$$3 letters = \left(\frac{6}{3}\right) = 20 \qquad \frac{12}{20} = \frac{3}{5}$$

$$1 \text{ vowel} = \left(\frac{4}{2}\right) x \left(\frac{2}{7}\right) = 6x^{2} \qquad \frac{12}{20} = \frac{3}{5}$$

$$(b) (i) 6 number = 5 \cdot 1 = 120$$

$$(ii) 135 \quad 2 + 6$$

$$vo even number \log therm means alternating the first is the second of the second o$$

$$-4-$$
(c) (i) $f(x) = x^{2} + e^{-\frac{1}{2}x} - 5$ is continuous
 $f(-1) = 1 + e^{\frac{1}{2}} - 5 = e^{\frac{1}{2}} - 4 < 0$
(* e^{-3})
 $f(-1) = 1 + e^{\frac{1}{2}} - 5 = e^{\frac{1}{2}} - 4 < 0$

 $\therefore f(-1) = 1 + e^{\frac{1}{2}} - 5 = e^{\frac{1}{2}} - 4 < 0$

 $\therefore f(-1) = 1 + e^{\frac{1}{2}} - 5 = e^{\frac{1}{2}} - 4 < 0$

 $\therefore f(-1) = 1 + e^{\frac{1}{2}} - 5 = e^{\frac{1}{2}} - 4 < 0$

 $\therefore f(-1) = 1 + e^{\frac{1}{2}} - 5 = e^{\frac{1}{2}} - 4 < 0$

 $\therefore f(-1) = 1 + e^{\frac{1}{2}} - 5 = e^{\frac{1}{2}} - 4 < 0$

 $(ii) x_{0} = -2$

 $x_{1} = x_{0} - \frac{f(x_{0})}{f(x_{0})} \qquad \left[\begin{array}{c} f(-2) = e^{-1} \\ f'(x) = 2x - \frac{1}{2} e^{-\frac{1}{2}x} \\ f'(-2) = e^{-1} \\ f'(x) = 2x - \frac{1}{2} e^{-\frac{1}{2}x} \\ f'(-2) = e^{-1} \\ f'(x) = 2x - \frac{1}{2} e^{-\frac{1}{2}x} \\ f'(-2) = e^{-1} \\ e^{\frac{1}{2}} - 2 - \frac{1}{2} e^{\frac{1}{2}x} \\ f'(x_{0}) \qquad \left[\begin{array}{c} f(-2) = e^{-1} \\ f'(x) = 2x - \frac{1}{2} e^{-\frac{1}{2}x} \\ e^{-\frac{1}{2}} \\$

-5-

4(c)
$$\tan \left(2 \tan^{-1} \left(-\frac{1}{2}\right)\right) = \frac{-\pi}{2} + \tan^{-1} x + \frac{\pi}{2}$$

let $x = + \tan^{-1} \left(-\frac{1}{2}\right)$
 $\frac{1}{2} + \tan^{-1} x + \frac{\pi}{2}$
 $\tan 2x = \frac{2 + \tan x}{1 - \tan^{2} x} = \frac{2 \times \left(-\frac{1}{2}\right)}{1 - \left(-\frac{1}{2}\right)^{2}} = \frac{-1}{1 - \frac{1}{4}} = \frac{-1}{\frac{3}{4}}$
 $= -\frac{4}{3}$

(d)
$$g(x) = \cos^{-1}x + \sin^{-1}x$$

(i) $g^{1}(x) = \frac{-1}{\sqrt{1-x^{2}}} + \frac{1}{\sqrt{1-x^{2}}} = 0$
(ii) $\therefore g(x) = \cosh tant for $-1 \le x \le 1$
 $g(c) = \cos^{-1}(c) + \sin^{-1}(c) = \frac{\pi}{2} + 0 = \frac{\pi}{2}$
(5) (a) $f(x) = x \sin^{-1}(x^{2})$
(i) $-1 \le x^{2} \le 1 \Rightarrow -i \le x \le 1$
(ii) $f'(x) = \sin^{-1}(x^{2}) + x\left(\frac{2x}{\sqrt{1-x^{4}}}\right)$
 $\Rightarrow -\frac{\pi}{2} \le y \le \frac{\pi}{2}$
 $= \sin^{-1}(x^{2}) + \frac{2x^{2}}{\sqrt{1-x^{4}}}$
(iii) $\frac{|x| - \frac{1}{2} - \frac{1}{2}|x|^{2}}{\sqrt{1-x^{4}}}$
(iv) $f'(i) = \sin^{-1}i + \frac{2}{\sqrt{0}}$
[CR: $\sin^{-1}(x^{2}) hai a double since (x^{2}) f'(x) = \sin^{-1}i + \frac{2}{\sqrt{0}}$
 $\therefore \text{ HPOT}$
 $\therefore x \sin^{-1}(x^{2}) hai a \frac{1+iple}{2}$ veet$

-6-

$$-8-$$
(5) (c) $y = \frac{1}{\sqrt{1+\chi^{2}}}$

$$= \pi \int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} y^{2} dx$$

$$= \pi \int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} \frac{1}{1+\chi^{2}} dx$$

$$= \pi + \tan^{-1}(x) \int_{0}^{\sqrt{2}} \frac{1}{1+\chi^{2}} dx$$

$$= \frac{1}{2} \int_{0}^{\sqrt{2}} \frac{1}{1+\chi^{2}} dx$$

- 8-

(i)
$$(os(\frac{\pi}{2} - A))$$

 $= (os\frac{\pi}{2} \cos A + sin\pi sinA)$
 $= ox sinA + 1x sinA$
 $= sinA$
 $3x = 2n\pi + \pi - 2$
 $4x = (4n+1)\pi$
 $x = (4n+1)\pi$
 $x = (4n+1)\pi$
 $x = (4n+1)\pi$
 $x = (4n-1)\pi$
 $x = (4n-1)\pi$
 $x = (4n-1)\pi$
 $x = (4n-1)\pi$

$$\therefore x = \left(\frac{4n\pm 1}{4}\right)\pi$$

(c) (i)
$$d(\frac{4an^{3}x}{dx}) = 34an^{2}x \cdot sec^{2}x$$

 $dx = 3(sec^{2}x - 1)sec^{2}x$
 $= 3 sec^{4}x - 3sec^{2}x$

(if)
$$\sin \tan^3 x = \int (3 \sec^4 x) - 3 \sec^2 x \int dx$$

 $\tan^3 x \int_0^{\pi/4} = 3 \int_0^{\pi/4} \sec^4 x \, dx - 3 \int_0^{\pi/4} \sec^2 x \, dx$
 $= 3 \int_0^{\pi/4} \sec^4 x \, dx = [\tan^3 \pi - \tan^3(c)] + 3 \tan x \int_0^{\pi/4} \sec^4 x \, dx = [1 - 0] + 3(1 - 0)$
 $= 4$
 $= \int_0^{\pi/4} \sec^4 x \, dx = \frac{4}{3}$

$$(0S2A = 1 - 2SIN^2A$$

.

$$(6) (d) \int_{0}^{\pi/6} \sin^{2}x \, dx$$

$$= \frac{1}{2} \int_{0}^{\pi/6} 2\sin^{2}x \, dx$$

$$= \frac{1}{2} \int_{0}^{\pi/6} (1 - \cos^{2}x) \, dx$$

$$= \frac{1}{2} \left[x - \frac{1}{2} \sin^{2}x \right]_{0}^{\pi/6}$$

$$= \frac{1}{2} \left[\pi/6 - \frac{1}{2} \sin^{2}x \right]_{0}^{\pi/6}$$

$$= \frac{1}{2} \left[\pi/6 - \frac{1}{2} \sin^{2}\pi \right]$$

$$= \pi/12 - \frac{1}{4} \times \frac{\sqrt{3}}{2}$$

$$= \pi/12 - \frac{\sqrt{3}}{8}$$

$$= \frac{2\pi - 3\sqrt{3}}{24}$$