

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS
2004

YEAR 12

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 3

Mathematics Extension 1

General Instructions

- Working time -90 minutes.
- Reading Time - 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work

Total Marks - 66

- Attempt all questions
- All questions are of equal value
- Return your answers in 3 booklets, one for each section. Each booklet must show your student number.

Examiner: \quad Mr R Dowdell

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left\{x+\sqrt{x^{2}-a^{2}}\right\},|x|>|a| \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & = \\
\ln \left\{x+\sqrt{x^{2}+a^{2}}\right\}
\end{array}
$$

NOTE: $\quad \ln x=\log _{e} x$

Section A:

Question 1: (11 marks)
(a) Evaluate $\int_{0}^{2} \frac{d x}{\sqrt{16-x^{2}}}$

2
(b) Evaluate
(i) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{4 x}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 7 x}$
(c) Use the substitution $u=\ln x$ to find $\int \frac{d x}{x \sqrt{1-(\ln x)^{2}}}$.
(d) Differentiate $\log _{e}\left(\sin ^{3} x\right)$, writing your answer in simplest form.
(e) Differentiate with respect to $x,\left(\tan ^{-1} x\right)^{2}$.

Question 2: (11 marks)

Marks

(a) (i) Write down the domain and range of $y=\sin ^{-1}(\sin x)$.
(ii) Draw a neat sketch of $y=\sin ^{-1}(\sin x)$.
(b) Given that $y=\sin ^{-1}(\sqrt{x})$, show that $\frac{d y}{d x}=\frac{1}{\sin 2 y}$.
(c) Show that the derivative of $x \tan x-\ln (\sec x)$ is $x \sec ^{2} x$.

Hence, or otherwise, evaluate $\int_{0}^{\frac{\pi}{4}} x \sec ^{2} x d x$.
(d) If $y=10^{x}$, find $\frac{d y}{d x}$ when $x=1$.

Section B:

Question 3: (11 marks) START A NEW BOOKLET
(a) Consider the function $y=4 \sin \left(x+\frac{\pi}{6}\right), \frac{\pi}{3} \leq x \leq \frac{4 \pi}{3}$.
(i) Find the inverse function of y, and write down its domain.
(ii) Sketch the inverse function of y.
(b) (i) On the same axes, draw the graphs of $y=\tan ^{-1} x$ and $y=\cos ^{-1} x$, showing the important features. Mark the point P where the curves intersect.
(ii) Show that, if $\tan ^{-1} x=\cos ^{-1} x$, then $x^{4}+x^{2}-1=0$. Hence, find the coordinates of P, correct to 2 decimal places.
(c) Show that $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{4}$

Question 4: (11 marks)

(a) (i) Draw a neat sketch of $y=\cos ^{-1} x$. State its domain and range.
(ii) Shade the area bounded by $y=\cos ^{-1} x$ and the x and y axes on your diagram.
(iii) Calculate the area of the region specified in (ii).
(b) Differentiate $y=\log _{e}\left(\frac{2 x}{(x-1)^{2}}\right)$. Write your answer in simplest form.
(c) The rate of change of temperature T^{o}, of an object is given by the equation $\frac{d T}{d t}=k(T-16)$ degrees per minute, k a constant.
(i) Show that the function $T=16+P e^{k t}$, where P is a constant and t the time in minutes, satisfies the equation.
(ii) If initially $T=0$ and after 10 minutes $T=12$, find the values of P and k.
(iii) Find the temperature of the object after 15 minutes.
(iv) Sketch the graph of T as a function of t and describe its behaviour as t continues to increase.

Section C:

Question 5: (11 marks) START A NEW BOOKLET

(a) It is known that $\ln x+\sin x=0$ has a root close to $x=0 \cdot 5$. Use one application of Newton's method to obtain a better approximation (to 2 decimal places).
(b) The acceleration of a particle P is given by the equation $\ddot{x}=8 x\left(x^{2}+1\right) \mathrm{ms}^{-2}$, where x is the displacement of P from the origin in metres after t seconds, with movement being in a straight line.

Initially the particle is projected from the origin with a velocity of $2 \mathrm{~ms}^{-1}$.
(i) Show that the velocity of the particle can be expressed as $v=2\left(x^{2}+1\right)$.
(ii) Hence, show that the equation describing the displacement of the particle at time t is given by $x=\tan 2 t$.
(iii) Determine the velocity of the particle at time $\frac{\pi}{8}$ seconds.
(c) The arc of the curve $y=\sin ^{-1} x$ between $x=0$ and $x=1$ is rotated about the x axis. Use Simpson's Rule with three function values to estimate the volume of the solid formed.

Question 6: (11 marks)

(a) The velocity $v \mathrm{~ms}^{-2}$ of a particle moving in simple harmonic motion along the x axis is given by the expression $v^{2}=28+24 x-4 x^{2}$.
(i) Between which two points is the particle oscillating?
(ii) What is the amplitude of the motion?
(iii) Find the acceleration in terms of x.
(iv) Find the period of the oscillation.
(v) If the particle starts from the point furthest to the right, find the displacement in terms of t.
(b) A stone is thrown from the top of a vertical cliff over the water of a lake. The height of the cliff is 8 metres above the level of the water, the initial speed of the stone is $10 \mathrm{~ms}^{-1}$ and the angle of projection is $\theta=\tan ^{-1}\left(\frac{3}{4}\right)$ above the horizontal.

The equations of motion of the stone, with air resistance neglected, are $\ddot{x}=0$ and $\ddot{y}=-g$.
(i) By taking the origin O as the base of the cliff, show that the horizontal and vertical components of the stone's displacement from the origin after t seconds are given by $x=8 t$ and

$$
y=-\frac{1}{2} g t^{2}+6 t+8 .
$$

(ii) Hence, or otherwise, calculate the time which elapses before the stone hits the lake and find the horizontal distance of the point of contact from the base of the cliff. (Assume $g=10 \mathrm{~ms}^{-2}$.)

End of Paper

SYDNEYBOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2004

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 3

Mathematics
 Extension 1

Sample Solutions

SECTION	MARKER
A	Ms Opferkuch
B	Ms Nesbitt
\mathbf{C}	Mr Bigelow

Section A

Question 1

$$
\text { (a) } \begin{aligned}
\int_{0}^{2} \frac{1}{\sqrt{16-x^{2}}} d x & =\int_{0}^{2} \frac{1}{\sqrt{4^{2}-x^{2}}} d x \\
& =\left[\sin ^{-1} \frac{x}{4}\right]_{0}^{2} \\
& =\sin ^{-1} \frac{1}{2} \\
& =\frac{\pi}{6}
\end{aligned}
$$

(b) (i) $\lim _{x \rightarrow \infty} \frac{\sin 3 x}{4 x}=\frac{3}{4} \lim _{x \rightarrow \infty} \frac{\sin 3 x}{3 x}$

$$
\begin{aligned}
& =\frac{3}{4} \times 1 \\
& =\frac{3}{4}
\end{aligned}
$$

(ii) $\lim _{x \rightarrow \infty} \frac{\sin 3 x}{\sin 7 x}=\lim _{x \rightarrow \infty} \frac{\sin 3 x}{3 x} \times \frac{7 x}{\sin 7 x}$

$$
\begin{aligned}
& =\frac{3}{7} \lim _{x \rightarrow \infty} \frac{\sin 3 x}{3 x} \times \frac{7 x}{\sin 7 x} \\
& =\frac{3}{7} \times 1 \\
& =\frac{3}{7}
\end{aligned}
$$

(c) $\int \frac{d x}{x \sqrt{1-(\ln x)^{2}}}$

Let $u=\ln x$

$$
\begin{aligned}
& \frac{d u}{d x}=\frac{1}{x} \\
& d u=\frac{1}{x} d x
\end{aligned}
$$

$\int \frac{d x}{x \sqrt{1-(\ln x)^{2}}}=\int \frac{1}{\sqrt{1-(u)^{2}}} d u$ $=\sin ^{-1} u+C$ $=\sin ^{-1}(\ln x)+C$
(d) $\log _{e}\left(\sin ^{3} x\right)$

$$
\frac{d y}{d u}=\frac{1}{u}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x} \\
&=\frac{1}{u} \times 3 \sin ^{2} x \cos x \\
&=\frac{1}{\sin ^{3} x} \times 3 \sin ^{2} x \cos x \\
&=\frac{3 \cos x}{\sin x} \\
& \therefore \frac{d y}{d x}=3 \cot x
\end{aligned}
$$

(e) $\frac{d}{d x}\left(\tan ^{-1} x\right)^{2}$

$$
\text { Let } u=\tan ^{-1} x
$$

$$
\frac{d u}{d x}=\frac{1}{1+x^{2}}
$$

Let $y=u^{2}$

$$
\frac{d y}{d u}=2 u
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =2 u \times \frac{1}{1+x^{2}} \\
\therefore \frac{d y}{d x} & =\frac{2 \tan ^{-1} x}{1+x^{2}}
\end{aligned}
$$

Question 2

(a) (i) $y=\sin ^{-1}(\sin x)$
Domain $\{x: x \in \mathbb{R}\}$
Range $\quad\left\{y:-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}\right\}$
(b) $\quad y=\sin ^{-1}(\sqrt{x})$

$$
\sin y=\sqrt{x}
$$

$$
\sin ^{2} y=x
$$

$$
\therefore x=\sin ^{2} y
$$

(ii)

$$
\begin{aligned}
\frac{d x}{d y} & =2 \sin y \cos y \\
& =\sin 2 y \\
\therefore \frac{d y}{d x} & =\frac{1}{\sin 2 y}
\end{aligned}
$$

(c) (i) $y=x \tan x-\ln (\sec x)$

$$
\therefore \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

Now $\frac{d}{d x} x \tan x$
Let $\quad u=x \quad v=\tan x$

$$
\begin{aligned}
& \frac{d u}{d x}=1 \quad \frac{d v}{d x}=\sec ^{2} x \\
& \begin{aligned}
& \therefore \frac{d}{d x}(x \tan x)=u \frac{d v}{d x}+v \frac{d u}{d x} \\
&=(x)\left(\sec ^{2} x\right)+(\tan x)(1) \\
&=x \sec ^{2} x+\tan x
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{u} \times \tan x \sec x \\
& =\frac{1}{\sec x} \times \tan x \sec x \\
& =\tan x \\
\therefore y & =x \tan x-\ln (\sec x) \\
\frac{d y}{d x} & =x \sec ^{2} x+\tan x-\tan x \\
& =x \sec ^{2} x
\end{aligned}
$$

Now $\frac{d}{d x} \ln (\sec x)$

$$
\text { Let } \begin{array}{rlrl}
u & =\sec x & y & =\ln u \\
& =\left(\cos ^{-1} x\right) & \frac{d y}{d u}=\frac{1}{u} \\
\frac{d u}{d x} & =-(\cos x)^{-2}(-\sin x) & \\
& =\frac{\sin x}{\cos ^{2} x} & \\
& =\tan x \sec x &
\end{array}
$$

(c)

$$
\text { (ii) } \begin{array}{rl}
\int x \sec ^{2} x & d x=[x \tan x-\ln (\sec x)]_{0}^{\frac{\pi}{4}} \\
& =\left\{\frac{\pi}{4} \tan \frac{\pi}{4}-\ln \left(\sec \frac{\pi}{4}\right)\right\}-\{0 \tan 0-\ln \\
& =\left\{\frac{\pi}{4}(1)-\ln (\sqrt{2})\right\}-\{-\ln (1)\} \\
& =\frac{\pi}{4}-\ln \sqrt{2} \\
& =\frac{\pi}{4}-\frac{1}{2} \ln 2 \\
& =\frac{\pi-2 \ln 2}{4}
\end{array}
$$

(d) $y=10^{x}$

$$
\log _{10} y=\log _{10} 10^{x}
$$

$$
\log _{10} y=x \log _{10} 10
$$

$$
x=\log _{10} y
$$

$$
x=\frac{\log _{e} y}{\log _{e 10}}
$$

$$
x=\frac{1}{\log _{e} 10} \times \log _{e} y
$$

$x \log _{e} 10=\log _{e} y$
$\therefore y=e^{x \log _{e} 10}$
$\therefore \frac{d y}{d x}=\log _{e} 10 \times e^{x \log _{e} 10}$
when $x=1$

$$
\begin{aligned}
\frac{d y}{d x} & =\log _{e} 10 \times e^{(1) \log _{e} 10} \\
& =\log _{e} 10 \times 10 \\
& =10 \log _{e} 10
\end{aligned}
$$

Question 3
(a) Inverse

$$
\begin{aligned}
& x=4 \sin (y+\pi) \quad \frac{\pi}{6} \leq \\
& y+\pi / 6=\sin ^{-1} \frac{x}{4} \\
& y=\sin ^{-1} x / 6 \\
& \text { ain }-4 \leq x \leq 4
\end{aligned}
$$

Domain $-4 \leq x \leq 4$
(i)

$$
x=4 \operatorname{Sin}\left(y+\frac{\pi}{6}\right) \quad \frac{\pi}{3} \leq y \leq 4 \frac{\pi}{3}
$$

Domain A_{y}

(ii)

$$
\begin{aligned}
& \tan ^{-1} x=y=\cos ^{-1} x \\
& \tan y=x=\cos y \\
& x=\frac{1}{\sqrt{1+x^{2}}} \\
& x^{2}\left(1+x^{2}\right)=1 \\
& x^{4}+x^{2}-1=0 \\
& x^{2}=\frac{-1 \pm \sqrt{1+4}}{2} \\
& x^{2}=0.618 \quad\left(x^{2}>0\right) \\
& x=0.79, y=0.67(2 d p)
\end{aligned}
$$

(c)

$$
\begin{aligned}
& x=\tan ^{-1}\left(\frac{1}{4}\right) y=\tan ^{-1}\left(\frac{3}{5}\right) \\
& \tan x=\frac{1}{4} \tan y=\frac{3}{5} \\
& \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
& \tan (x+y)=\frac{\frac{1}{4}+\frac{3}{5}}{1-\frac{1}{4} \cdot \frac{3}{5}}=1 \\
& x+y=\frac{-114}{4} \\
& \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{3}{5}\right)=\pi / 4
\end{aligned}
$$

Question't

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{2}} \cos y d y \\
& =[\sin y]_{0}^{\pi / 2} \\
& =1-0=1 u^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =\log _{e^{2 x}-2 \log _{x}(x-1)} \\
& =\frac{1}{x}-\frac{2}{x-1} \text { or }-\frac{x+1}{x(x-1)}
\end{aligned}
$$

(c) $\frac{d T}{d t}=k(T-16)$
(i)

$$
\begin{aligned}
& \frac{d t}{d t}=\frac{1}{K(T-16)} \\
& t=\frac{1}{K} \log e(T-16)+C \\
& K(t-c)=\log e(T-16) \\
& T-16=e^{k t-k c}
\end{aligned}
$$

$$
T-16=P e^{k t}\left(P=e^{-k c}=\text { constat }\right)
$$

$T=16+P e^{k t}$ as required

$$
\text { (ii) } \begin{aligned}
& T=16+P e^{k t} \\
& T=0, t=0 \quad P=-16 \\
& T=16-16 e^{k t} \\
& T=12,12=16-16 e^{1 t t} \\
& -4=-16 e^{10 k} \\
& \frac{1}{4}=e^{10 k}, k=\frac{1}{10} \log e^{\frac{1}{4}} \\
& k \approx-0.1386 \\
& \text { (1ii) } t=15 T=16-16 e^{-0.1386 \times 15} \\
& T=14^{\circ}
\end{aligned}
$$

(iv) $\underbrace{\text { as } t \rightarrow \infty ; 16 e^{k t} \rightarrow 0}_{\text {of }}$| $T \rightarrow 16$ |
| :--- |

suasion 5.
(a). Let

$$
\begin{aligned}
& f(x)=\ln x+\sin x . \\
& f^{\prime}(x)=\frac{1}{x}+\cos x . \quad\left(\frac{1}{r} \sin \sin \right)
\end{aligned}
$$

$$
\text { If } \begin{aligned}
x_{1} & =0.5 \\
\text { ten } x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} 0.5+\sin 0.5 \\
& =0.5-\frac{h(0)}{\frac{1}{0.5}+\cos 0.5} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Oi calculates } \\
& \text { is in tracer }
\end{aligned}
$$

$$
=0.5-0.07427 \text { in in degree }
$$

$$
=10 \cdot 5 \pi(2.0 .0 .) . \quad 21 \text { mode 0.73. }
$$

(b) (l), $\ddot{x}=8 x\left(x^{2}+1\right)$ and when $t=0, x=0, v=2$.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} \nu^{2}\right) & =8 x^{3}+8 x \\
\frac{1}{2} u^{2} & =2 x^{4}+4 x^{2}+c .
\end{aligned}
$$

Now $\sim=r$ when $x=0$.

$$
\begin{aligned}
\therefore \frac{1}{2} a^{2} & =0+0+c \\
c & =2 . \\
\therefore v^{2} & =2 x^{4}+4 x^{2}+2 \\
\sim^{2} & =4 x^{4}+8 x^{2}+4 \\
v^{2} & =4\left(x^{4}+x^{2}+1\right) \\
& =4\left(x^{2}+1\right)^{2} \\
v & = \pm 2\left(x^{2}+1\right)\left(\text { newer when } x=0 \cdot \therefore \sim \neq-2\left(x^{2}+1\right)\right) \\
\therefore v & \left.=2\left(x^{2}+1\right)\right]
\end{aligned}
$$

(ii)

$$
\begin{array}{lrl}
\frac{d x}{d t}=2\left(x^{2}+1\right) & \text { now } t=0, \text { when } x=0 . \\
\frac{d t}{d x}=\frac{1}{2\left(x^{2}+1\right)} & \therefore 0=\frac{1}{2} \tan ^{-1} 0+c \tag{2}\\
c & c=0 \\
t=\frac{1}{2} \tan ^{-1} x+c & \therefore 2 t & =\frac{1}{2} \tan ^{-1} x
\end{array}
$$

(ii)

$$
\text { 4f } \begin{array}{rl}
x & =\tan 2 t \\
v & =2 \sec ^{2} 2 t \\
\alpha t & t=\frac{\pi}{8} \\
v & =2 \times \sec ^{2} \frac{\pi}{4} \\
& =2 \times(\sqrt{2})^{2} \\
& =4 \sin ^{-1} \tag{21}
\end{array}
$$

(C)
$\xrightarrow[1]{\frac{\pi}{2}+\int_{1}^{2} y=\sin ^{-1} x}$

$$
\begin{align*}
V & =\pi \int_{0}^{1}\left[\sin ^{-1} x\right]^{2} d x \\
& =\pi \times \frac{1}{3}\left[\left(\operatorname{en}^{-1} 0\right)^{2}+4\left[x^{-1} L\right]^{2}+\left(\pi^{-1},\right)^{2}\right] \\
& =\frac{\pi}{6}\left[0^{2}+4 \times\left(-\frac{\pi}{6}\right)^{2}+\left(\frac{\pi}{2}\right)^{2}\right] \\
& =\frac{\pi}{6}\left[0+\frac{\pi^{2}}{9}+\frac{\pi^{2}}{4}\right] \\
& =\frac{\pi}{6} \times \frac{33 \pi^{2}}{36} \\
& =\frac{13 \pi^{3}}{216} \\
& =11087 \mathrm{k}^{3}(2, D P) \tag{3}
\end{align*}
$$

40.isstron 6
(a)

$$
\text { (i) } \begin{aligned}
& \sim^{2}=28+24 x-4 x^{2} \\
&=4\left(7+6 x-x^{2}\right) \\
&=4(7-x)(1+x) . \\
& \text { Clewily } \sim^{2} \geqslant 0 \\
& \therefore 4(7-x)(1+x) \geqslant 0 \\
& \therefore-1 \leq x \leq 7
\end{aligned}
$$

(i) \quad Ampritude $=\frac{7--1}{2}=4.11$
(iin)

$$
\begin{aligned}
\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =\frac{d}{d x}\left(14+12 x-2 x^{2}\right) \\
& =12-4 x \\
& =-4(x-3) \quad\left(N B \quad n^{2}=4\right. \\
T & =2 \pi
\end{aligned}
$$

(r)

$$
\begin{aligned}
T=\frac{2 \pi}{2} & =\frac{\frac{2 \pi}{2}}{1} \text { andceitec of } \\
& =\pi \text { inecs } 11 \text { indion is } x=3
\end{aligned}
$$

(n)

$$
\begin{aligned}
& x=3+4 \cos (2 t+\varepsilon) \\
& \text { if } x=7 \sin t=0 . \\
& 7=3+4 \cos \varepsilon . \\
& 4=4 \cos \varepsilon \\
& \cos \varepsilon=1 \\
& \varepsilon=0 \\
& \therefore x=3+4 \cos 2 t
\end{aligned}
$$

$$
2
$$

$$
t=0, \quad x=0, y=8
$$

(b).

(1)

$$
\begin{aligned}
& \prime \prime \\
& x=0 \\
& x^{\prime}=8 . \\
& x=8 t+c_{1} \\
& \text { when } t=0, x=0 \therefore c_{1}=0 \\
& x=8 t
\end{aligned}
$$

$$
\begin{aligned}
& \dot{y}=-g \\
& \dot{y}=-g t+c_{2} \\
& \text { clealy } \ddot{y}=6 \text { when } t=0 \\
& \quad: c_{2}=6 .
\end{aligned}
$$

$$
y=-g t+6
$$

$$
\therefore y=-\frac{g t^{2}}{2}+6 t \mp c_{3}
$$

$$
3
$$

$$
\text { when } t=0, y=8 . \therefore c_{3}=8
$$

$$
\therefore y=-\frac{1}{2} g t^{2}+6 t+8
$$

$$
\text { (11) of } y=0 . ~ \begin{aligned}
& \quad 5 t^{2}+6 t+8=0 \Rightarrow-\left(5 t^{2}-6 t-8\right)=0 \\
&-(5 t+4)(t-2)=0 \\
& t=2,-\frac{4}{5}
\end{aligned}
$$

$\therefore 12$ eecs hare elatod.

$$
\operatorname{anc} x=16
$$

