

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2007

YEAR 12 Mathematics Extension 1 HSC Task \#3

Mathematics
 Extension
 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 70

- Attempt questions 1-3
- Start each new section of a separate writing booklet

Examiner: D.McQuillan

STANDARD INTEGRALS

$\int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0$, if $n<0$
$\int \frac{1}{x} d x=\ln x, x>0$
$\int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0$
$\int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0$
$\int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0$
$\int \sec ^{2} a x d x=\frac{1}{a} \tan a x$,
$\int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0$
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a$
$\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0$
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$
NOTE: $\ln x=\log _{e} x, x>0$

QUESTION 1 (23 marks)

(a) Evaluate $\cos ^{-1}\left(\frac{2}{5}\right)$ in radians to 4 significant figures.
(b) Use the table of integrals to find
(i) $\quad \int \frac{d x}{9+x^{2}}$
1
(ii) $\frac{d}{d x}\left(\sin ^{-1} \frac{x}{7}\right)$
(c)

If $A X=3, B X=4$ and $C X=6$ find $D X$.
(d) Find the inverse functions of the following
(i) $\quad f(x)=\frac{x+1}{4}$
(ii) $g(x)=\frac{x+2}{1-x}$
(e) Evaluate $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$.
(f) It is obvious that, $\sqrt{4}<\sqrt{7}<\sqrt{9}$. Use two application of the 'halving the interval' method on the equation $x^{2}-7=0$ to find a smaller interval containing $\sqrt{7}$.
(g)

The diagram shows the graph of $y=\sqrt[3]{x}$. Copy the diagram into your examination booklet. On your diagram sketch the graph of the inverse function of $y=\sqrt[3]{x}$.
(h) Find $\int 8 x\left(x^{2}+2\right)^{3} d x$ using the substitution $u=x^{2}+2$.
(i) A rock is thrown into a still pond and causes a circular ripple. If the radius of the ripple in increasing a $0.5 \mathrm{~m} / \mathrm{s}$.
(i) Find the rate of change of the area as a function of the radius.
(ii) How fast is the area increasing when the radius is 10 m ?
(j)
(i) State the domain and range of $y=5 \cos ^{-1} x$.
(ii) Hence sketch $y=5 \cos ^{-1} x$.
(k) Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2 \sin x \cos x d x$.
(l) Show that $\cos \left\{\tan ^{-1}\left[\sin \left(\cot ^{-1} x\right)\right]\right\}=\sqrt{\frac{x^{2}+1}{x^{2}+2}}$.

End of Question 1

QUESTION 2 (23 marks)

(a) Evaluate $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x-x^{2}\right)$
(b)

TA and TB are tangents to a circle centre O .
(i) Prove that ATBO is a cyclic quadrilateral.
(ii) Hence or otherwise prove that $\angle \mathrm{ATB}=2 \angle \mathrm{ABO}$.
(c) It has been proposed that for all positive integer values of n the following statement is true.

$$
2+4+6+\ldots+2 n=(n+2)(n-1)
$$

(i) Assume that the statement is true for $n=k$ and show that it true for $n=k+1$.
(ii) Is the original statement true for all positive integer values of n ? Explain your answer.
(d) A spot of light, undergoing simple harmonic motion on a computer screen, has a period of π seconds. When the spot is $3 \sqrt{3}$ centimetres to the left of its equilibrium point it has a velocity of 6 centimetres per second towards its equilibrium point.
(i) Show that $x(t)=A \sin (n t)+B \cos (n t)$ is a solution of the simple harmonic motion equation $\ddot{x}(t)=-n^{2} x(t)$.
(ii) Using the initial conditions of the spot of light find values for n, A and B to show that the function $x(t)=3 \sin (2 t)-3 \sqrt{3} \cos (2 t)$ describes the motion of the spot.
(iii) At what time will the spot first reach it's equilibrium point?
(iv) At what time will the spot first reach it's maximum amplitude?
(v) What is the maximum amplitude of the spot of light?
(e)

The diagram shows two circles intersecting at A and B . The diameter of one circle is AC. Copy the diagram into your examination booklet.
(i) On your diagram draw a straight line through A , parallel to CB , to meet the second circle at D.
(ii) Prove that BD is a diameter of the second circle.
(iii) Suppose that BD is parallel to CA. Prove that the circles have equal radii.

End of Question 2

QUESTION 3 (22 marks)

(a) Evaluate $4 \int_{0}^{r} \sqrt{r^{2}-x^{2}} d x$ using the substitution $x=r \cos \theta$.
(b)

A belt ABCDEF of length 40 m passes round two pulleys, centres O_{1} and O_{2}. The parts ABC and DEF of the belt are in contact with the pulleys and the parts AE and CD are straight.
(i) If $\mathrm{O}_{1} \mathrm{~A}=2 \mathrm{~m}, \mathrm{O}_{2} \mathrm{D}=5 \mathrm{~m}$, and $\angle \mathrm{AOB}=\theta$ radians, show that

$$
3 \tan \theta=3 \theta+20-5 \pi .
$$

(ii) Using a first approximation of $\frac{\pi}{3}$ and one applications of Newton's method, find a root of the equation to 2 decimal places.
(c) A particle is moving such that its velocity, $v \mathrm{~m} / \mathrm{s}$, is related to its displacement, x metres, by the formula $v=2 x-3$.
(i) Show that the acceleration, $a \mathrm{~m} / \mathrm{s}^{2}$, of the particle is given by $a=4 x-3$.
(ii) Initially the particle has displacement $x=3.5 \mathrm{~m}$. Show that the relationship between displacement, x, and time, t seconds, can be expressed as

$$
\begin{equation*}
\log _{e}\left(\frac{2 x-3}{4}\right)=2 t \tag{3}
\end{equation*}
$$

(iii) Write down the function for acceleration in terms of t.
(d) Use mathematical induction to show that $n!\geq 2^{n-1}$ for $n=1,2,3, \ldots$
(e) How far from A should the point P be, on the interval AB , so as to maximise the angle θ.

End of Question 3
End of Exam

1. (a) Evaluate $\cos ^{-1}\left(\frac{2}{5}\right)$ in radians to 4 significant figures.

Solution: $1.159279480727408599846583794 \ldots \approx 1.159$.
(b) Use the table of integrals to find
(i) $\int \frac{d x}{9+x^{2}}$

Solution: $\int \frac{d x}{9+x^{2}}=\frac{1}{3} \tan ^{-1} \frac{x}{3}+c$.
(ii) $\frac{d}{d x}\left(\sin ^{-1} \frac{x}{7}\right)$

Solution: $\frac{d}{d x}\left(\sin ^{-1} \frac{x}{7}\right)=\frac{1}{\sqrt{49-x^{2}}}$.
(c)

If $A X=3, B X=4$ and $C X=6$, find $D X$.
Solution: $D X \times X C=A X \times X B$ (product of intercepts theorem).

$$
D X \times 6=3 \times 4
$$

$$
\therefore D X=2
$$

(d) Find the inverse functions of the following
(i) $f(x)=\frac{x+1}{4}$

$$
\text { Solution: } \begin{aligned}
x & =\frac{f^{-1}(x)+1}{4} \\
4 x & =f^{-1}(x)+1 \\
f^{-1}(x) & =4 x-1 .
\end{aligned}
$$

(ii) $g(x)=\frac{x+2}{1-x}$

$$
\text { Solution: } \begin{aligned}
x & =\frac{g^{-1}(x)+2}{1-g^{-1}(x)}, \\
x\left(1-g^{-1}(x)\right) & =g^{-1}(x)+2 \\
x-2 & =g^{-1}(x)+x g^{-1}(x), \\
g^{-1}(x) & =\frac{x-2}{x+1} .
\end{aligned}
$$

(e) Evaluate $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$.

Solution: $\sin \frac{2 \pi}{3}=\sin \frac{\pi}{3}$ and the range of inverse sine is from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, $\therefore \sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\frac{\pi}{3}$.
(f) It is obvious that $\sqrt{4}<\sqrt{7}<\sqrt{9}$. Use two applications of the 'halving the interval' method on the equation $x^{2}-7=0$ to find a smaller interval containing $\sqrt{7}$.

Solution: \quad Put $f(x)=x^{2}-7$,

$$
\begin{aligned}
f(2) & =-3, \\
f(3) & =2, \\
f(2.5) & =-0.75 \\
(3+2.5) / 2 & =2.75 \\
f(2.75) & =0.5625
\end{aligned}
$$

\therefore a better estimate is between 2.5 and 2.75 .
(g)

The diagram shows the graph of $y=\sqrt[3]{x}$. Copy the diagram into your writing booklet. On your diagram sketch the graph of the inverse function of $y=\sqrt[3]{x}$.

Solution:		

(h) Find $\int 8 x\left(x^{2}+2\right)^{3} d x$ using the substitution $u=x^{2}+2$.

Solution: $\int 8 x\left(x^{2}+2\right)^{3} d x=\int 4 u^{3} d u$,

$$
u=x^{2}+2
$$

$$
\begin{array}{ll}
=u^{4}+c, & \frac{d u}{d x}=2 x \\
=\left(x^{2}+2\right)^{4}+c . &
\end{array}
$$

(i) A rock is thrown into a still pool and causes a circular ripple. The radius of the ripple is increasing at $0.5 \mathrm{~m} / \mathrm{s}$.
(i) Find the rate of change of the area as a function of the radius.

Solution: Area, $A=\pi r^{2}$,

$$
\begin{aligned}
\frac{d A}{d r} & =2 \pi r \\
\frac{d r}{d t} & =0.5 \mathrm{~m} / \mathrm{s} \text { (given) } \\
\frac{d A}{d t} & =\frac{d A}{d r} \times \frac{d r}{d t} \\
& =2 \pi r \times 0.5 \\
& =\pi r .
\end{aligned}
$$

(ii) How fast is the area increasing when the radius is 10 m ?

Solution: The area is increasing at $10 \pi \mathrm{~m}^{2} / \mathrm{s}$, or about $31.4 \mathrm{~m}^{2} / \mathrm{s}$.
(j) (i) State the domain and range of $y=5 \cos ^{-1} \frac{x}{3}$.

$$
\text { Solution: } \begin{aligned}
-1 & \leq \frac{x}{3} \leq 1 \\
-3 & \leq x \leq 3 \\
0 & \leq y \leq 5 \pi
\end{aligned}
$$

(ii) Hence sketch $y=5 \cos ^{-1} \frac{x}{3}$.
Solution:
(k) Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2 \sin x \cos x d x$.

Solution: Method 1:

$$
\begin{aligned}
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2 \sin x \cos x d x & =\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin 2 x d x \\
& =\left[\frac{-\cos 2 x}{2}\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\
& =-\frac{1}{2}\{-1-0\} \\
& =\frac{1}{2}
\end{aligned}
$$

Solution: Method 2:

$$
\begin{aligned}
& \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2 \sin x \cos x d x=\int_{\frac{1}{\sqrt{2}}}^{1} 2 u \frac{d u}{d x} \cdot d x \\
& =\left[u^{2}\right]_{\frac{1}{\sqrt{2}}}^{1} \text {, } \\
& =1-\frac{1}{2} \text {, } \\
& =\frac{1}{2} \text {. } \\
& \begin{aligned}
\text { Put } u & =\sin x, \\
\frac{d u}{d u} & =\cos x,
\end{aligned} \\
& \overline{d x}=\cos x \text {. } \\
& \text { When } x=\frac{\pi}{2} \quad u=1 \text {, } \\
& x=\frac{\pi}{4} \quad u=\frac{1}{\sqrt{2}} .
\end{aligned}
$$

(l) Show that $\cos \left\{\tan ^{-1}\left[\sin \left(\cot ^{-1} x\right)\right]\right\}=\sqrt{\frac{x^{2}+1}{x^{2}+2}}$.

Solution: We note that $x \in \mathbb{R}$ and $\cot ^{-1} x$ ranges over the interval $(0, \pi)$. Over this domain $\sin \alpha=\sin \left(\frac{\pi}{2}-\alpha\right)$.

From the diagram, $\sin \alpha=\frac{1}{\sqrt{x^{2}+1}}$, with range $0<\sin \alpha<1$.
Over this domain, putting $\beta=\tan ^{-1}(\sin \alpha), 0<\beta<\frac{\pi}{4}$.

Now $\cos \beta=\frac{\sqrt{x^{2}+1}}{\sqrt{x^{2}+2}}$, i.e. $\cos \left\{\tan ^{-1}\left[\sin \left(\cot ^{-1} x\right)\right]\right\}=\sqrt{\frac{x^{2}+1}{x^{2}+2}}$.
(ii) Toin $A B^{\prime}$, let $\angle O B A=\alpha$

Quest 10 in (2)
(a) $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x-x^{2}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \tan ^{-1}\left(-x^{2}\right) \\
& =-\frac{\pi}{2}
\end{aligned}
$$

(b)

(i) $\angle O A T=\angle O B T=90^{\circ}$

C tgt perpendicular to the radum at the pr of contact)
$\therefore \quad O A T B$ is $c y=110^{\circ}$

(iii) $C A B$ is a parm
(1) $(i i)$ mot true for $n=1$, or 2 ..

$$
n=1, \quad \text { L.H.S }=2, \quad \text { RHS }=(1+2)(1-1)
$$

2.) $\angle A B C=90^{\circ}$ $(<$ in a semi circle)

$$
\therefore \angle D A B=90^{\circ}
$$ $(a \mid t .<' s, A D \| B C)$

$\therefore B D$ is diameter. semi C roole, radiiqual
$\therefore C A=B D \Rightarrow$ radi
(d)
(i)

$$
x(t)=A \sin (n t)+B \cos (n t)
$$

$$
\dot{x}=\mu A \operatorname{con}_{0}(n t)-n B \sin (n t)
$$

$$
\ddot{x}=-n^{2} A \sin (n t)-n^{2} B \cos (n t)
$$

$$
\ddot{x}=-n^{2}[A \sin (n t)+B \cos (n t)]
$$

$$
=-n^{2} x(t)
$$

(ii) $T=\frac{2 \pi}{n} \quad \pi=\frac{2 \pi}{n}$
(α)

$$
\therefore \quad n=2 .
$$

$$
l=T x(t)=R \sin (2 t+\alpha)
$$

expounding:

$$
=(R \cos \alpha) \sin 2 t+(R \sin \alpha) \cos 2 t
$$

A B.

$$
\therefore \quad A=R \cos \alpha=3
$$

$$
B=R \sin \alpha=-3 \sqrt{3} .
$$

$$
\Rightarrow \quad \tan \alpha=-\sqrt{3} \Rightarrow \alpha=-\frac{\pi}{3}
$$

$\therefore \quad R=6$.

$$
x(t)=6 \sin \left(2 t-\frac{\pi}{3}\right)
$$

$\dot{x}(t)=12 \cos \left(2 t-\frac{\pi}{3}\right)$.

(β) when $x(t)=0$
$(\gamma) R=6$.

$$
\begin{align*}
& 0=\sin \left(2 t-\frac{\pi}{3}\right) \tag{2}\\
& \therefore \quad 2 t-\frac{\pi}{3}=0, \pi, 2 \pi, \cdots \\
& \\
& 2 t=\pi / 6 \Rightarrow t=\frac{\pi}{6} .
\end{align*}
$$

(() When $u(t)=6$

$$
\begin{align*}
& 6=6 \sin \left(2 t-\frac{\pi}{3}\right) \tag{2}\\
& \therefore \quad \sin \left(2 t-\frac{\pi}{3}\right)=1 \\
& \therefore 2 t-\frac{\pi}{3}=\frac{\pi}{2} \tag{3}\\
& \therefore 2 t=\frac{5 \pi}{6} \Rightarrow t=\frac{5 \pi}{12}
\end{align*}
$$

QUESTON 3
$3(i)$
ii)

$$
\begin{aligned}
& v=\frac{d x}{d t}=2 x-3 \\
& \frac{d t}{d x}=\frac{1}{2 x-3} \\
& t=\frac{1}{2} \log _{e}(2 x-3)+c
\end{aligned}
$$

$t=0 \quad x=3.5 \quad c=-\frac{1}{2} \log 4$

$$
t=\frac{1}{2} \log _{e}\left(\frac{2 x-3}{4}\right)
$$

$$
2 t=\log _{c}\left(\frac{2 x-3}{4}\right)
$$

$$
\frac{2 x-3}{4}=e^{2 t}
$$

$$
2 x-3=4 e^{2 t}
$$

(iii)

$$
\begin{aligned}
a & =4 x-6 \\
& =2 \times 4 e^{2 t} \\
& =8 e^{2 t}
\end{aligned}
$$

$$
\begin{aligned}
& x=r \cos \theta \quad \frac{d x}{d \theta}=-r \sin \theta \\
& 4 \int_{0}^{r} \sqrt{r-x^{2}} d x \quad \begin{array}{l}
x=0 \quad \theta=\pi / 2 \\
x=r \theta=0
\end{array} \\
& =4 \int_{\pi / 2}^{0} \sqrt{r^{2}-r^{2} \operatorname{Cos}^{2} \theta} \cdot-r \sin \theta d \theta \\
& =4 \int_{0}^{\pi / 2} r \sin \theta \cdot r \sin \theta d \theta \\
& =\int_{0}^{\pi / 2} 4 r^{2} \operatorname{Sin}^{2} \theta d \theta=4 r^{2} \int_{0}^{\frac{\pi}{2}} \frac{1-\operatorname{Cos} 2 \theta}{2} d \theta \\
& =4 r^{2}\left(\frac{1}{2} \theta-\frac{1}{4} \operatorname{Sin} 2 \theta\right]_{0}^{\frac{\pi}{2}} \\
& =4 r^{2}\left[\frac{\pi}{4}-0-(0)\right]=\pi r^{2} \\
& \text { (b) } \text { xil }^{\prime \prime} V=2 x-3 \quad \frac{1}{2} v^{2}=\frac{1}{2}\left(4 x^{2}-12 x+9\right) \\
& \frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=a=4 x-6
\end{aligned}
$$

(c) Assume $R(k)$ is true
(i) $1,!\geq 2^{k-1}$ for $k=1,2,3 \ldots$.
$1!\geqslant 2^{\circ} \therefore P(1)$ is tone
if $n=k+1$

$$
\begin{aligned}
(k+1)! & =(k+1) k! \\
& \geq(k+1) 2^{k-1} \quad \text { using assumption } \\
& \geq 2 \cdot 2^{k-1} \text { as } k \geq 1 \\
(k+1)! & >2
\end{aligned}
$$

\therefore if $P(k)$ is true, $P(k+1)$ istrue. by Mathematical In duction

$$
n!\geq 2^{n-1} \text { for } n=1,2,3 \ldots
$$

(d)

$\mathrm{BO}_{2} \mathrm{E}=\theta$ (cointerior to $\mathrm{AO}_{1} \mathrm{O}_{2}$)
Dran $0, G \| A E$

$$
\begin{aligned}
& \tan \theta=\frac{O, G}{O_{2} G}=\frac{A E}{5-2}=\frac{A E}{3} \\
& A E=3 \tan \theta \\
& \begin{aligned}
\operatorname{lan} \theta: \operatorname{Arc~ABC}= & 2 \times 20=4 \theta \\
\text { ArcEFD } & =5[2 \times \pi-\theta)] \\
& =10 \pi-10 \theta
\end{aligned}
\end{aligned}
$$

Belt $=$ Arc $A B C+2 A E+A R C E F D=40 \mathrm{~m}$
$4 \theta+6 \tan \theta+10 \pi-100=40$
$6 \tan \theta=6 \theta+40-10 \pi$
$3 \tan \theta=3 \theta+20-5 \pi$
(d), $a_{1}=a-\frac{f(\theta)}{f^{\prime}(\theta)}$
(ii)

$$
\begin{aligned}
f^{\prime}(\theta) & =3 \tan \theta-3 \theta-20+5 \pi \\
f^{\prime}(\theta) & =3 \sec ^{2} \theta-3 \\
a_{1} & =\frac{\pi}{3}-\frac{f(\pi / 3)}{f^{\prime}\left(\frac{\pi}{3}\right)} \\
& =\frac{\pi}{3}-\left(\frac{-2.24}{9}\right) \\
& =1.295(3 d \cdot p)
\end{aligned}
$$

(e)

$$
\begin{aligned}
\theta & =\pi-\tan ^{-1}\left(\frac{5}{x}\right)^{-\tan ^{-1}}\left(\frac{2}{3-x}\right) \\
\frac{d \theta}{d x} & =-\frac{1}{1+\left(\frac{5}{x}\right)^{2}} x-\frac{5}{x^{2}}-\frac{2}{1+\left(\frac{2}{3-x)^{2}} \times-\frac{1}{(3-x)^{2}}\right.} \\
& =\frac{5}{x^{2}+25}-\frac{2}{(3-x)^{2}+4}
\end{aligned}
$$

$\frac{d 0}{d x}=0$ when $5\left[(3-x)^{2}+4\right]=2 x^{2}+50$

$$
65-30 x^{2}+5 x^{2}=2 x^{2}+50
$$

$$
3 x^{2}-30 x+15=0
$$

$$
x^{2}-10 x+5=0
$$

$$
x=\frac{10 \pm \sqrt{80}}{2}
$$

$$
=5 \pm 2 \sqrt{5}
$$

$$
x=5-2 \sqrt{5} \quad(x<3) .
$$

when $x=0.5 \frac{d \theta}{d x}>0$

$$
x=0.6 \quad \frac{d x}{d x}<0
$$

\therefore max when $x=5-2 \sqrt{5}$

