

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2008

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #3

Mathematics Extension 1

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Hand in your answers in 3 separate bundles. Section A (Question 1), Section B (Question 2) and Section C (Question 3)

Total Marks - 80

- Attempt questions 1-3
- All questions are **NOT** of equal value.

Examiner: R. Boros

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

Section A – Start a new booklet.

Question 1 (27 marks).

a) Differentiate with respect to x

(i)
$$\frac{x}{2}\ln(x^2-2)$$
 2

(ii)
$$\cos^{-1}(3x-1)$$
 2

b) If *M* and *N* are constants and $x = Me^{-t} + Ne^{2t}$ simplify:

$$\frac{d^2x}{dt^2} - \frac{dx}{dt} - 2x$$

d) Find

(i)
$$\int \frac{1 dx}{(4+x)^2}$$

(ii)
$$\int \frac{1 dx}{4+x^2}$$

(iii)
$$\int \frac{x dx}{4+x^2}$$

6

e) Use the substitution u = x - 1 to evaluate:

$$\int_0^1 x(x-1)^5 dx \tag{4}$$

f) What is the largest possible domain of:

$$y = \ln\left(x^2 - 1\right) \tag{3}$$

g) Four digit numbers greater than 7000 are to be made from the digits 8, 7, 6
and 5. Repetition of the digits is allowed. How many such numbers can be made?

		End of Section A.	
	(ii)	How many of these start with the letter L.	1
		possible?	1
h)	(i)	How many different arrangements of the letters of BALLOON are	

Marks

Section B – Start a new booklet.

Question 2 (29 Marks).			Marks		
a)	Consider	the function $f(x) = 2 \tan^{-1}\left(\frac{x}{2}\right)$.			
	(i)	Evaluate $f(0)$.	1		
	(ii)	Draw the graph of $f(x)$.	1		
	(iii)	State the domain and range.	2		
b)	For the fu	unction $y = x + e^{-x}$			
	(i)	Find the coordinates and determine the nature of any stationary			
		points on the graph of $y = f(x)$.	3		
	(ii)	Show that the graph is always concave upwards for all values of x .	1		
	(iii)	Sketch the graph of $y = f(x)$ showing clearly the coordinates of	_		
		any stationary points and the equations of any asymptotes.	2		

c) The diagram below shows the graph of $y = \pi + 2\sin^{-1} 3x$.

	Section B continues next page		
	the point B (give answer in general form of equation)	5	
(iii)	Find the equation of the tangent to the curve $y = \pi + 2\sin^{-1} 3x$ at	2	
(ii)	Write down the coordinates of the endpoints A and C.	4	
(i)	Write down the coordinates of the point B.		

d) A pipe which is 12 metres long is bent into a circular arc which subtends an angle of 2θ radians at the centre of the circle. The chord of the circle joining the ends of the arc is 10 metres long.

(i)	Show that $6\sin\theta - 5\theta = 0$.	3
(ii)	Show that $\theta_0 = 1$ is a good first approximation to the value of θ .	2
(iii)	Use one application of Newton's Method to find another	
	approximation, θ_1 , to the value of θ (correct to 4 decimal places).	3
(iv)	Use this value of θ_1 , to find an approximation to the length of the	
	radius of the arc, rounding off this answer correct to 2 decimal	
	places.	2

End of Section B.

Section C – Start a new booklet.

Question 3 (24 marks).

a)

Figure not to scale.

Water is being let into the conical vessel, shown above, at a constant rate of 8cm³/second.

(i) Show that if *h* cm is the depth of the vessel then r = h and

$$V = \frac{1}{3}\pi h^3$$

When the depth is 12cm find:

- (ii) The rate of increase in the depth (in terms of π). 3
- (iii) The rate of increase in the area of the top surface of the water.
- b) The rate of decrease of temperature of a body hotter than its surroundings is proportional to the temperature difference. If A is the air temperature and T is the temperature of the body after t minutes, then

$$\frac{dT}{dt} = -k(T - A) \tag{1}$$

- (i) Show that if *I* is the initial temperature of the body, then the function $T = A + (I A)e^{-kt}$ satisfies the condition (1).
- (ii) IF the initial temperature of an ingot is 1400°C and it cools in the open where the air temperature is 20°C, find the temperature after 30 minutes, given that it cooled to 1200°C 4 in 5 minutes.

Section C continues next page

Marks

3

c) The acceleration of a particle moving in a straight line is given by

$$\ddot{x} = -\frac{900}{x^3}$$

Where *x* metres is the displacement from the origin after *t* seconds. Initially, the particle is 10 metres to the right of the origin, moving with a velocity of 3m/s.

- (i) Find an equation for the velocity of the particle.
- (ii) Find the velocity of the particle when it is 100m to the right of the origin.

3

1

6

d) The curves $y = \sin^{-1} x$ and $y = \cos^{-1} x$ intersect at point P. The acute angle between their tangents at that point is θ . Find θ to the nearest degree. You

may need to use the fact that
$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
, where m_1 and m_2 are the

gradients of the tangent lines.

End of Section C.

End of Examination.

This page is intentionally left blank

Jolutions to Section (A) (g) > Tooo (repetition) (d) (i) $\int (4+x)^2 dx = \frac{1}{4+x} + c$ (a) $\frac{d}{dx} \left[\frac{\kappa}{2} \ln(\kappa^2 - 2) \right]$ (ii) tan 2 + C $(1) = \frac{1}{2} \ln(x^2 - 2) + \frac{x^2}{2}$ 244 $(iii) \frac{1}{2} \left(\frac{2n}{4+n^2} dx = \frac{\ln(4+n^2)}{2} \right)$ $1 + \frac{1}{2} \ln (n^2 - 2) + \frac{2}{n^2 - 2}$ or $= 2 \times 4^3 = 128$ (ii) $\frac{d}{dx}$ (3x - 1) (h) (i) BALLOON (e) $\int x(x-1) dx$ (7 (etters). Let m = x - 1, dm = dx(i) $\frac{7!}{2!2!} = 13$ OR • n = 0, m = -1, n = 1, m = 0. $\frac{-3}{\sqrt{3(2\varkappa-3\varkappa^2)}}$ S ((+~u) ~u ~du cii) $\begin{array}{c} (b) \\ x = Me^{-t} + Ne^{2t} \end{array}$ $= \int_{1}^{0} (m^5 + m^6) dm$ 61 $x = -Me^{t} + 2Ne^{2t}$ $\bullet = \left[-\frac{\mu 6}{4} + \frac{\mu 7}{7} \right] - 1$ 2 x <u>6!</u> 2!2! $\tilde{n} = Me^{-t} + 4Ne^{2t}$ $0 - (\frac{1}{6} - \frac{1}{7}) = \frac{1}{2}$ $=\frac{1}{2}(6!)=3$ $\frac{1}{x} - \frac{1}{x} - 2x$ Met + 4Ne2t + ME - ZNet (f) x2-120 $2Me^{-t} - 2Ne^{2t}$ \implies $n^2 > 1$ lither not (c) 0+ XX=13 [27]

EXA TASK 3 SECTION B. a)|f(0)=0.Y lî] 11) Domann: XER. Range: -ITKYSTT. b).1) y= 2+e-x dy=1=e-x 1-e-x=0 X=0. y=1. dy That = C + AAP AL (0,1). e 7 D .° (0,1) 15 a local manimum. 15) dry' = e-x70 Hze. Therefore the graph 15 alleys concare up.

111) 11/2 [y-2c] = 1/2 e-2c 2700 [y-2c] = 2-700 e-2c y= x is an asymptotes. ý=x. B(0,17) cĭ) $(1)^{(1)} A (\frac{1}{3}, 2M) \\ C (-\frac{1}{3}, 0),$ $\|1\rangle$. y = $T + 2 \sin^2 3x$ $\frac{dy}{dhc} = 2 \times \frac{1}{\sqrt{1-(3n)^2}} \times 3.$ = 6 VI-923 At 220, m=6 $y-y_i = m(x-x_i)$ Y-TT = 622. 62-ytT=0.

 $\frac{d}{1} = \frac{10}{5m(1-20)} = \frac{10}{5m20}$ L=ro. 12=120 12=120 $\frac{10}{\cos \theta} = 2\sin \theta \cos \theta$ r = sino $\frac{5}{3} = \frac{6}{0}$ 50= Gsind. 65m0 - 50=0. ii). Let f(0)=6sin0-50 f(i) = Gsin(i) - Sxl,~ 0.0488 which is close to zero. $\widehat{II}) \quad \mathcal{O}_{\mathbf{I}} = \mathcal{O}_{\mathbf{0}} = \frac{f(\mathcal{O}_{\mathbf{0}})}{f'(\mathcal{O}_{\mathbf{0}})}$ f'(0)= Gcos 0-5. $\Theta_{i} = 1 - \frac{\beta(i)}{\overline{s'(i)}}$ ≈ 1.0278. $iv) = \frac{6}{0}$ ≈ 5.84.

2008 Assessment #3 Mathematics Extension 1: Solutions— Section C

3. (a)

Figure not to scale.

Water is being let into the conical vessel, shown above, at a constant rate of 8 cm^3 /second.

(i) Show that if h cm is the depth of the vessel then r = h and $V = \frac{1}{3}\pi h^3$.

When the depth is 12 cm find:

(ii) The rate of increase in the depth (in terms of π).

Solution: $\frac{dV}{dt} = 8 \text{ cm}^3 \text{s}^{-1},$ $\frac{dV}{dh} = \pi h^2,$ $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV},$ $= \frac{8}{\pi h^2},$ $= \frac{1}{18\pi} \text{ cm s}^{-1} \text{ when } h = 12 \text{ cm}.$

(iii) The rate of increase in the area of the top surface of the water.

Solution: Surface area,
$$S = \pi h^2$$
,

$$\frac{dS}{dh} = 2\pi h$$

$$\therefore \frac{dS}{dt} = \frac{dS}{dh} \times \frac{dh}{dt},$$

$$= 2\pi h \times \frac{8}{\pi h^2},$$

$$= \frac{16}{h},$$

$$= \frac{4}{3} \text{ cm}^2 \text{s}^{-1} \text{ when } h = 12 \text{ cm}.$$

(b) The rate of decrease of temperature of a body hotter than its surroundings is proportional to the temperature difference. If A is the air temperature and T is the temperature of the body after t minutes, then

$$\frac{dT}{dt} = -k(T-A) \qquad (1)$$

(i) Show that if I is the initial temperature, then the function $T = A + (I - A)e^{-kt}$ satisfies the condition (1).

Solution: $\frac{dT}{dt} = -k(I-A)e^{-kt},$ but $(I-A)e^{-kt} = T-A,$ $\therefore \frac{dT}{dt} = -k(T-A).$

(ii) If the initial temperature of an ingot is $1400^{\circ}C$ and it cools in the open where the air temperature is $20^{\circ}C$, find the temperature after 30 minutes, given that it cooled to $1200^{\circ}C$ in 5 minutes.

Solution:
$$1200 = 20 + (1400 - 20)e^{-5k}$$
,
 $e^{-5k} = \frac{1180}{1380}$,
 $-5k = \ln\left(\frac{59}{69}\right)$,
 $k = \frac{\ln\left(\frac{59}{69}\right)}{-5}$,
 ≈ 0.0313 .
 $T_{30} \approx 20 + (1400 - 20)e^{-30 \times 0.0313}$,
 $\approx 559.4^{\circ}C$ (4 sig. fig.).

2

4

(c) The acceleration of a particle moving in a straight line is given by

$$\ddot{x} = -\frac{900}{x^3}$$

where x metres is the displacement from the origin after t seconds. Initially, the particle is 10 metres to the right of the origin, moving with a velocity of 3 m/s. (i) Find an equation for the velocity of the particle.

Solution: $v \frac{dv}{dx} = -\frac{900}{x^3},$ $\int v \, dv = -900 \int x^{-3} \, dx,$ $\frac{v^2}{2} = \frac{900x^{-2}}{2} + c,$ *i.e.* $v^2 = \frac{900}{x^2} + c.$ Initially $9 = \frac{900}{100} + c;$ $\therefore v = \frac{30}{x}$ (positive velocity from initial conditions).

(ii) Find the velocity of the particle when it is 100 m to the right of the origin.

Solution: When $x = 100 \text{ m}, v = 3/10 \text{ ms}^{-1}$.

(d) The curves $y = \sin^{-1} x$ and $y = \cos^{-1} x$ intersect at point *P*. The acute angle between their tangents at this point is θ . Find θ to the nearest degree. You may need to use the fact that $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$, where m_1 and m_2 are the gradients of the tangent lines.

3

1