

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2009

YEAR 12 Mathematics Extension 1 HSC Task \#3

Mathematics
 Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each Section is to be returned in a separate bundle.
- All answers must be given in exact simplified form unless otherwise stated.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 69

- Attempt questions 1-3
- Start each new section in a separate answer booklet

Examiner: D.McQuillan

Question 1 (24 marks)

(a) Differentiate
(i) $e^{2 x} \quad 1$
(ii) $\ln (2 x-5) \quad 1$
(iii) $x^{2} e^{4 x} \quad 2$
(iv) $\frac{\ln x}{x}$

2
(b) Find
(i) $\int e^{1-x} d x \quad 1$
(ii) $\int \frac{d x}{2 x-7}$
(c) Evaluate
(i) $\int_{0}^{1} e^{4 x} d x$
(ii) $\int_{3}^{7} \frac{3 x}{x^{2}-5} d x$
(d) Evaluate
(i) $\tan ^{-1}(\sqrt{3})$
(ii) $\sin ^{-1}\left(\sin \frac{\pi}{4}\right)$
(iii) $\quad \cos \left(2 \sin ^{-1}\left(\frac{5}{13}\right)\right)$
(e) Using the substitution $u=x^{2}$ find $\int 2 x e^{x^{2}} d x$.
(f) Find the equation of the tangent to the curve $y=e^{3 x-1}$ at the point where $x=2$.
(g) Solve the following pair of equations simultaneously.

$$
\begin{aligned}
& \sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2} \\
& \sin ^{-1} x-\sin ^{-1} y=\frac{\pi}{6}
\end{aligned}
$$

End of Question 1

Question 2 (24 marks)

(a) AK is a diameter of the circle, centre $\mathrm{O} . \mathrm{SK} \| \mathrm{CB}$.
(i) Prove that $\mathrm{AS} \perp \mathrm{BC}$.
(ii) Let $\angle \mathrm{BAK}=\alpha$, hence show that $\angle \mathrm{SAC}=\alpha$.

(b)
(i) Show that $u^{2}+u+1+\frac{1}{u-1}=\frac{u^{3}}{u-1}$.
(ii) Hence find $\int \frac{d x}{\sqrt{x}-\sqrt[3]{x}}$ using the substitution $x=u^{6}$.
(c) The curve $y=\frac{3}{\sqrt{x^{2}+4}}$ is rotated about the x-axis between $x=0$ and $x=2$. Find the volume of the solid generated.
(d) Given that $f(x)=2-\frac{1}{2 e^{x^{3}}}$
(i) show that $f^{\prime}(x)+3 x^{2} f(x)=6 x^{2}$
(ii) show that the continuous function $f(x)$ has a root between $x=-2$ and $x=-1$
(iii) use one application of Newton's Method with initial approximation of $x=-1$ to find an approximation to the root of $f(x)$. Give your answer to 3 decimal places.
(e) Evaluate $\int_{-3}^{0} \frac{x^{2}}{\sqrt{1-x}} d x$ using the substitution $u=1-x$.
(f) Let $y=\cot ^{-1} x$ be defined as $x=\cot y$ for $0<y<\frac{\pi}{2}$.
(i) Graph $y=\cot ^{-1} x$.
(ii) Show that $\frac{d y}{d x}=-\frac{1}{1+x^{2}}$.
(iii) Hence or otherwise show that, for all $x>0$,

$$
f(x)=\tan ^{-1} x+\cot ^{-1} x
$$

is a constant function.
(iv) Find the value of $\tan ^{-1} x+\cot ^{-1} x$ in exact form.

End of Question 2

Question 3 (21 marks)

(a) Let $I=\int_{o}^{\pi} x f(\sin x) d x$. Using the substitution $u=\pi-x$ show that $2 I=\pi \int_{o}^{\pi} f(\sin x) d x$.
(b) Two circles O_{1} and O_{2} meet at the points A and B . When produced, the tangent to O_{1} at A meets O_{2} at C . A point E lies on the circumference of O_{1} so that BE is parallel to CA . The chord BE meets O_{2} at D. Prove that $A E=C D$.

(c) Using Mathematical Induction, prove that for any integer $n \geq 1$,

$$
5 \times 2^{3 n-2}+3^{3 n-1}
$$

is divisible by 19 .
(d) Given that $f(x)=\frac{e^{x}-e^{-x}}{2}$.
(i) Show that $f^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$
(ii) Solve the equation $f(x)=5$ to 2 decimal places.
(iii) Find $\frac{d}{d x}\left[f^{-1}(x)\right]$.
(e) A painting in an art gallery has height 2.1 m and is hung so that its lower edge is 0.4 metres above the eye of an observer who is standing x metres away from the wall.

(i) Find an expression for ϕ in terms of x.
(ii) Hence, find θ as a function of x.
(iii) How far from the wall should the observer stand to get the best view? (That is, find x such as to maximise the viewing angle θ.)

End of Question 3

End of Exam

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Quastion $\frac{1}{2 e^{i x}}$
(a) (i)
(ii) $\frac{2}{2 x-5}$
(iii) $2 x e^{4 x}+4 x^{2} e^{4 x}$

$$
\begin{aligned}
\text { (iv) }\left(\frac{1}{x} \ln x\right) & =-x^{-2} \ln x+\frac{1}{x^{2}} \\
& =\frac{1}{x^{2}}-\frac{\ln x}{x^{2}}
\end{aligned}
$$

(b) (i) $\int e^{1-x} d x=-e^{1-x}+c$.
(ii)

$$
\begin{aligned}
\int \frac{d x}{2 x-7} & =\frac{1}{2} \int \frac{2 d x}{2 x-7} \\
& =\frac{1}{2} \ln (2 x-7)+C .
\end{aligned}
$$

(c)

$$
\text { (1) } \begin{aligned}
\int_{0}^{1} e^{4 x} d x & =\left.\frac{1}{4} e^{4 x}\right|_{x=0} ^{1} \\
& =\frac{e^{4}}{4}-\frac{1}{4}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{3}^{7} \frac{3 x}{x^{2}-5} d x & =\frac{3}{2} \int_{3}^{7} \frac{2 x}{x^{2}-5} d x \\
& =\frac{3}{2}\left[\ln \left(x^{2}-5\right)\right]_{3}^{7} \\
& =\frac{3}{2}(\ln 44-\ln 4) \\
& =\frac{3}{2} \ln 11 .
\end{aligned}
$$

(d) (i) $\quad \tan ^{-1}(\sqrt{3})=\frac{\pi}{3}$
(ii)

$$
\begin{aligned}
\sin ^{-1}\left(\sin \frac{\pi}{4}\right) & =\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& =\pi / 4
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\cos \left(2 \sin ^{-1}\left(\frac{5}{13}\right)\right) & =\cos (2 \theta) \\
& =\cos ^{2} \theta-\sin ^{2} \theta \\
& =\left(\frac{12}{13}\right)^{2}-\left(\frac{\sum}{13}\right)^{2} \\
& =\frac{144}{169}-25 \\
& =\frac{119}{169}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \int 2 x e^{x^{2}} d x \\
&= \int e^{4} d x \\
&= e^{4}+c \\
&= e^{x^{2}}+C
\end{aligned}
$$

(f)

$$
\begin{aligned}
& y=e^{3 x-1} \quad x=2 \\
& \frac{d y}{d x}=3 e^{3 x-1} \\
& \text { Gad ut } x=2 \\
& m=3 e^{5} \\
& y=e^{5}=3 e^{5}(x-2) \\
& y=3 e^{5} x-5 e^{5}
\end{aligned}
$$

(g)

$$
\begin{aligned}
& \sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{3} \\
& \sin ^{-1} x-\sin ^{-1} y=\frac{\pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
&(A)+B \\
& 2 \sin ^{-1} x=\frac{2 \pi}{3} \\
& \sin ^{-1} x=\frac{\pi}{3} \\
& x=\frac{\sqrt{3}}{2}
\end{aligned}
$$

(A) - (B)

$$
\begin{aligned}
2 \sin ^{-1} y & =\frac{\pi}{3} \\
\sin ^{-1} y & =\frac{\pi}{6} \\
y & =\frac{1}{2} \\
x & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

2) a) i)

$$
\begin{aligned}
& \angle A S K=90^{\circ} \text { (angle in semi arden) } \\
& \angle A D B=90^{\circ}(\text { corr. } \angle ' s C B \| S K) \\
& \therefore A S \perp B C
\end{aligned}
$$

ii) Let $\angle B A K=\alpha$

$$
\begin{aligned}
& \angle A B K=90^{\circ} \text { (angle in sen circle) } \\
& \angle B K A=90^{-\alpha}(\angle \text { sum of } \Delta) \\
& \angle A C B=90^{-\alpha}(\angle \text { in same segment) } \\
& \angle A D C=90^{\circ} \quad(A S+B C) \\
& \angle S A C=\alpha \quad(\angle \text { sum of } \Delta)
\end{aligned}
$$

b) i)

$$
\begin{aligned}
\text { LHS } & =u^{2}+u+1+\frac{1}{u-1} \\
& =\frac{(u-1)\left(u^{2}+u+1\right)+1}{u-1} \\
& =\frac{u^{3}-1+1}{u-1} \\
& =\frac{u^{3}}{u-1} \\
& =\text { RUS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } \begin{aligned}
& \int \frac{d x}{\sqrt{x}-\sqrt[3]{x}} x=u^{6} \\
&=\int \frac{d x}{d u}=6 u^{5} \\
&=\int \frac{d u}{u^{3}-u^{2}} d x=6 u^{5} d u
\end{aligned} \\
& =\int \frac{6 u^{3}}{u-1} d u \\
& =6 \int\left(u^{2}+u+1+\frac{1}{u-1}\right) d u \\
& =6\left[\frac{u^{3}}{3}+\frac{u^{2}}{2}+u+\ln (u-1)\right]+c \\
& =6\left[\frac{\sqrt{x}}{3}+\frac{\sqrt[3]{x}}{2}+\sqrt[6]{x}+\ln (\sqrt[6]{x}-1)\right]+C
\end{aligned}
$$

c)

$$
\begin{aligned}
& V=\pi \int_{a}^{5} y^{2} d x \\
& V=\pi \int_{0}^{-2} \frac{9}{x^{2}+4} d x \\
& V=9 \pi \int_{0}^{2} \frac{d x}{x^{2}+4} \\
& V=9 \pi\left[\frac{1}{2} \tan ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& v=9 \pi\left[\frac{1}{2} \tan ^{-1} \frac{2}{2}-\frac{1}{2} \tan \frac{0}{2}\right] \\
& v=9 \pi\left[\frac{1}{2} \times \frac{\pi}{4}\right]_{3} \\
& v=\frac{9 \pi^{2}}{8} \text { units }^{3}
\end{aligned}
$$

d) i)

$$
\begin{aligned}
f(x) & =2-\frac{1}{2 e^{-x^{3}}} \\
& =2-\frac{1}{2} e^{-x^{3}} \\
f^{\prime}(x) & =\frac{3 x^{2}}{2} e^{-x^{3}}
\end{aligned}
$$

$$
f^{\prime}(x)+3 x^{2} f(x)=\frac{3 x^{2}}{2} e^{-x^{3}}+3 x^{2}\left(2-\frac{1}{2} e^{-x^{3}}\right)
$$

$$
=\frac{3 x^{2}}{2} / e^{-x^{3}}+6 x^{2}-\frac{3 x^{2}}{2} / e^{-x^{3}}
$$

$$
=6 x^{2}
$$

ii)

$$
\begin{aligned}
f(-2) & =2-\frac{1}{2} e^{-(-2)^{3}} \\
& =-1488.48 \ldots \\
& <0 \\
f(-1) & =2-\frac{1}{2} e^{-(-1)^{3}} \\
& =0.640859 \\
& >0
\end{aligned}
$$

since the conthrwous function $f(x)$ has a change in sign at least one root lies between $x=-2$ \& $x=-1$.
iii)

$$
\begin{array}{ll}
a_{1}=a_{0}-\frac{f\left(a_{0}\right)}{f^{\prime}\left(a_{0}\right)} r & f(-1)=0.640859085 \\
f^{\prime}(-1) & =\frac{3}{2}(-1)^{2} e^{-(-1)^{3}} \\
& =4.077422743 \\
a_{1}=-1-\frac{0.640859085}{4074422743} & \\
a_{1}=-1.157 \text { (3 dec. places) }
\end{array}
$$

$$
\begin{aligned}
& \text { e) } \int_{-3}^{0} \frac{x^{2}}{\sqrt{1-x}} d x \\
& u=1-x \\
& x=1-u \\
& \frac{d u}{d x}=-1 \\
& =\int_{4}^{1} \frac{(1-u)^{2}}{\sqrt{u}}-d u \\
& d x=-d u \\
& \text { when } x=0 \\
& x=-3 \\
& u=1 \\
& u=4 \\
& =\int_{1}^{4} \frac{1-2 u+n^{2}}{\sqrt{u}} d u \\
& =\int_{1}^{4}\left(u^{-\frac{1}{2}}-2 u^{\frac{1}{2}}+u^{3 / 2}\right) d u \\
& =\left[2 u^{\frac{1}{2}}-\frac{4}{3} u^{\frac{3}{2}}+\frac{2}{5} u^{\frac{5}{2}}\right]_{1}^{4} \\
& =\left[2(4)^{\frac{1}{2}}-\frac{4}{3}(4)^{\frac{3}{2}}+\frac{2}{5}(4)^{\frac{5}{2}}-\left(2-\frac{4}{3}+\frac{2}{5}\right)\right] \\
& =\frac{76}{15}
\end{aligned}
$$

f) i)

$$
\begin{array}{rl}
y=\cot ^{-1} x & x=\cot y \\
& 0<y<\frac{\pi}{2}
\end{array}
$$

ii)

$$
\begin{array}{rlrl}
y & =\cot ^{-1} x & & \\
x & =\cot ^{y} & & x \\
& =\frac{1}{\tan y} \\
\frac{d x}{d y} & =-\operatorname{cosec}^{2} y & \tan y & =\frac{1}{x} \\
\frac{d y}{d x} & =-\frac{1}{\operatorname{cosec}^{2} y} & y & =\tan ^{-1}\left(\frac{1}{x}\right) \\
& =\frac{-1}{1+\cot ^{2} y} & \frac{d y}{d x} & =\frac{1}{1+\left(\frac{1}{x}\right)^{2}} \cdot \frac{1}{x^{2}} \\
& =-\frac{1}{1+x^{2}} & & =-\frac{1}{1+x^{2}}
\end{array}
$$

iii)

$$
\begin{aligned}
f(x) & =\tan ^{-1} x+\cot ^{-1} x \\
f^{\prime}(x) & =\frac{1}{1+x^{2}}+-\frac{1}{1+x^{2}} \\
& =0
\end{aligned}
$$

$\therefore f(x)$ is a constant function
iv)

$$
\begin{aligned}
f(1) & =\tan ^{-1} \mid+\cot ^{-1} 1 \\
& =\frac{\pi}{4}+\frac{\pi}{4} \quad \therefore f(x)=\frac{\pi}{2} \\
& =\frac{\pi}{2}
\end{aligned}
$$

Question 3
$(a) I=\int_{0}^{\pi} x f(\sin x) d x$ Let $u=\pi-x$

$$
\therefore d u=-d x
$$

When $x=0, u=\pi$

$$
x=\pi, u=0
$$

$$
\therefore I=\int_{\pi}^{0}(\pi-u) f(\sin (\pi-u))(-d u)
$$

$$
=\int_{0}^{\pi} \pi f(\sin i) d x-\int_{0}^{\pi} x f(\sin) d x d
$$

$=\int_{0}^{\pi} \pi f(\sin x) d x-\int_{0}^{\pi} x f(\sin x) d x$

$$
\therefore 2 I=\int_{0}^{\pi} \pi f(\sin x) d x
$$

$$
[3]
$$

(1) The variable name is a dummy - swap u for x.
(*) ie $\angle F A E=\angle A C D$ cund so $) ~(\mid C D C$ (Corresp.angles)
(b)

Jain $A B$
Let $\angle F A E=\alpha$
$\angle A E B=\alpha$ (altemate $\angle \hat{\beta}, A E \| C D)$
$\angle A B E=\alpha$ (altemate segment)
$\angle A C D=\alpha$ (stanchig ou sare
\therefore Acb ti aprarallehogran
(a pair of sides egtrat paralle)
$\therefore E A=D C$ (opp sicles of paralkeliggron equal QED
(C) p(n): Anim to prave

$$
19 \mid 5 \times 2^{3 n-2}+3^{3 n-1}
$$

$p(1)$: Test when $n=1$

$$
\begin{align*}
& 5 \times 2^{3-2}+3^{3-1} \\
& =19 \tag{1}
\end{align*}
$$

$p(i 2):$ Assume trune for $n=k$

$$
\omega 5 \times 2^{3 k-2}+3^{3 k-1}=19 R
$$

$p(i k+1):$ RTP that $p(k) \rightarrow p(k+1)$

$$
\begin{align*}
& 5 \times 2^{3 k+1}+3^{3 k+2} \\
= & 40 \times 2^{3 k-2}+27\left(19 R-5 \times 2^{3 k-2}\right) \\
= & 40 \times 2^{3 k-2}+27 \times 19 R-135 \times 2^{3 k-2} \\
= & 27 \times 19 R-95 \times 2^{3 k-2} \\
= & 19\left(27 R-5 \times 2^{3 k-2}\right) \tag{2}
\end{align*}
$$

$\therefore p(k) \rightarrow p(k+1)$.
Thus $p(h)$ is drace for $h>1$.
(d) $f(x)=\frac{e^{x}-e^{-x}}{2}$
(i) Invert by exchanging x and y.

$$
\begin{array}{rl}
x & =\frac{e^{y}-e^{-y}}{2} \\
2 x & =e^{y}-e^{-y} \\
2 x e^{y} & =e^{2 y}-1 \quad\left(\text { mpyby } e^{i y}\right) \\
2 y & 2 x e^{y}-1=0 \text { (quadratic) } \\
e^{2 y}-e^{y} & =\frac{2 x \pm \sqrt{4 x^{2}+4}}{2} \\
e^{y}=x \pm \sqrt{2 x^{2}+1}
\end{array}
$$

Toke logs, drop spurious -ie

$$
y=\ln \left(x+\sqrt{x^{2}+1}\right)[B]
$$

(ii) $5=\frac{e^{x}-e^{-x}}{2}$

Do $e^{2 x}-10 e^{x}-1=0$

$$
\begin{aligned}
e^{x} & =\frac{10+\sqrt{100+4}}{2} \\
& =10.099 \ldots \\
x & \div 2.31
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
& \frac{d}{d x}\left(\ln \left(x+\sqrt{x^{2}+x}\right)\right) \\
= & \frac{1}{x+\sqrt{x^{2}+1}}\left(1+\frac{x}{\sqrt{x^{2}+1}}\right) \\
= & \frac{1}{x+\sqrt{x^{2}+1}}\left(\frac{x+\sqrt{x^{2}+1}}{\sqrt{x^{2}+1}}\right) \\
= & \frac{1}{\sqrt{x^{2}+1}} \quad[2]
\end{aligned}
$$

(e) (1) $\tan \phi=\frac{0.4}{x}$

$$
\therefore \quad \phi=\tan ^{-1} \frac{0.4}{x}
$$

(ii) $\theta+\phi=\tan ^{-1}\left(\frac{2.5}{x}\right)$

$$
\begin{aligned}
& \therefore \theta=\tan ^{-1}\left(\frac{2.5}{x}\right)-\tan ^{-1}\left(\frac{0.4}{x}\right)[20] \\
& \text { ii) } 10
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d \theta}{d x} & =\frac{-2.5}{x^{2}+6.25}+\frac{0.4}{x^{2}+0.16} \\
& =\frac{-2.5\left(x^{2}+0.16\right)+0.4\left(x^{n}+6.25\right)}{\left(x^{2}+6.25\right)\left(x^{2}+0.16\right)}
\end{aligned}
$$

$\frac{d \theta}{d x}=0$ when

$$
\begin{aligned}
& -2.5\left(x^{2}+0.10\right)+0.4\left(x^{2}+6.25\right)=0 \\
& 2 \cdot 1\left(1-x^{2}\right)=0 \\
& 1-x^{2}=0 \\
& \therefore x= \pm 1 \\
& B \text { ut } x>0 \\
& \therefore x=1
\end{aligned}
$$

