SYDNEY BOYS HIGH SCHOOL moore pari, surry hills

June 2011
 Assessment Task 3
 Year 12

Mathematics Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question.
- All answers to be given in simplified exact form unless otherwise stated.

Total Marks - 92

- Attempt questions 1-6
- All questions are of equal value.
- Start each new question in a separate answer booklet.
- Hand in your answers in 4 separate bundles: Section A (Questions 1 and 2), Section B (Questions 3 and 4, Section C (Questions 5 and 6)

Examiner: A Ward

Start a new booklet.

Section A

Question 1 (15 marks).

a) In how many ways can 8 people sit at a round table?
b) For the polynomial $(a-6) x^{5}+(2 b+1) x^{2}+(12-4 c)$, state the possible
value(s) of a, b and c if the polynomial is:
(i) monic of degree 5 .
(ii) of degree 2 .
(iii)a zero polynomial.
c) Find $\frac{d y}{d x}$ given the following:
(i) $y=\frac{1}{x+3}$
(ii) $y=\sin \left(1+x^{3}\right)$
(iii) $y=e^{4 x+2}$
(iv) $y=\frac{\ln (x+2)}{\ln \left(x^{2}+1\right)}$

End of Question 1

Question 2 (15 Marks).
Marks
a) (i) Given $f(x)=\frac{5-3 x}{4}$, find $f^{-1}(x)$
(ii) Sketch the graphs $f(x)$ and $f^{-1}(x)$ on the same axes.
b) Find the following:
(i) $\int \frac{6}{3 x+1} d x$
(ii) $\int \frac{e^{x}+1}{e^{x}} d x$
c) Evaluate: $\int_{1}^{2} \frac{3 x^{2}-5 x+7}{x} d x$
d) Find an exact value for $\sin 15^{\circ}$, showing all working.
e) If $y=\sin ^{-1}(x)$, find $\frac{d^{2} y}{d x^{2}}$.

End of Question 2

End of Section A

Section B - Start a new booklet.

Question 3 (15 Marks).

a) $Q(x)=a x^{2}+b x+c$ and when $Q(x)$ is divided by $(x-m)$ or $(x-n)$, the
remainders are the same. Prove that, if $m \neq n$ then $(m+n)$ is equal to the sum of the roots of $Q(x)$.
b) (i) What are the range and period of $y=2 \cos \left(\frac{x}{2}\right)$?
(ii) Draw the graph of $y=1-2 \cos \left(\frac{x}{2}\right)$ for $-2 \pi \leq x \leq 2 \pi$.
c) (i) In how many ways can 10 individuals be divided into 2 groups of 5?
(ii) If the two youngest individuals must be in the same group, how many ways are there now?
(iii)How many ways are there, if the two youngest individuals must not be in the same group?

End of Question 3

Question 4 (15 Marks).

a) (i) Express $\sqrt{3} \cos 2 t-\sin 2 t$ in the form $A \cos (2 t+\alpha)$ with $A>0$ and

$$
0 \leq \alpha \leq \frac{\pi}{2}
$$

(ii) Find, in exact form, the general solution to $\sqrt{3} \cos 2 t-\sin 2 t=1$
b) Show that:

$$
\frac{n!}{(n-r)!r!}+\frac{n!}{(n-r+1)!(r-1)!}=\frac{(n+1)!}{r!(n-r+1)!}
$$

c) For $n=1,2$ and 3 , find the value of :

$$
\int_{\frac{\pi}{2}}^{\pi} \cos n x d x
$$

d) (i) Find the second derivative of $y=\ln \left(x^{2}+4\right)$
(ii). Write the equation of the tangent to $y=x \tan ^{-1}\left(\frac{x}{2}\right)$ at $x=2$

End of Question 4

End of Section B

Section C - Start a new booklet.

Question 5 (15 Marks).

a)

A roof of a house has rectangular base 7 m by 10 m . Each of the four sloping faces makes an angle of 50° with the horizontal.
(i) Calculate the length of the ridge EF
(ii) Calculate the total surface area of the sloping faces to 1 decimal place.
b) Prove:

$$
\sec 2 A+\tan 2 A \equiv \frac{\cos A+\sin A}{\cos A-\sin A}
$$

c) Use the substitution $u=2 \sin x$ to find:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{8 \cos x}{1+4 \sin ^{2} x} d x
$$

d) Factorise $24 x^{3}-14 x^{2}-63 x+45$, given that one of the zeros is $\frac{3}{2}$.

End of Question 5

Question 6 (17 marks).
a) Solve the following for $0 \leq t \leq 2 \pi$:

$$
\sin 2 t+4 \sin t+2 \cos t=-4
$$

b) If $t=\tan \left(\frac{\theta}{2}\right)$, express in terms of $t: \frac{1-2 \sin \theta}{2 \cos \theta+1}$

Leave your answer in simplified exact form.
c) (i) Find the coordinates of P, the point of intersection of the curves:

$$
\begin{aligned}
& y=e^{x} \\
& y=2+3 e^{-x}
\end{aligned}
$$

(ii) If these curves cut the y-axis at the points A and B. Calculate the area bounded by $A B$ and the arcs $A P$ and $B P$.
d) A movie screen on a wall is 20 metres high and 10 metres above eye level.

You are x metres from the screen.

(i) Show that $\theta=\tan ^{-1}\left(\frac{30}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)$
(ii) Find $\lim _{x \rightarrow 0}\left(\tan ^{-1}\left(\frac{30}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)\right)$
(iii)Find $\lim _{x \rightarrow \infty}\left(\tan ^{-1}\left(\frac{30}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)\right)$
(iv)At what distance should you position yourself so that the viewing angle θ of the movie screen is as large as possible?

End of Question 6.

End of Section C.
End of Examination.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{a x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

1 a
(6)
(i) $(a-6)=1$

$$
a=7
$$

(ii') $a-6=0$
(iii) $\quad a=a, b=-\frac{1}{2} \quad c=3 \quad 3$
(
(i)

$$
\begin{aligned}
y & =(x+3)^{-1} \\
d y & =-(x+3)^{-2}+1 \\
y & =\frac{1}{(x+3)^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\sin \left(1+x^{3}\right) \\
d y & =\cos \left(1+x^{3}\right) \cdot 3 x^{2} 2 \\
d x & =3 x^{2} \cos \left(1+x^{3}\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
y= & e^{4 x+2} \\
\frac{a y}{d x} & =e^{4 x+2} \cdot e^{4} \\
& =4 e^{4 x+2}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& y=\frac{\ln (x+2)}{\ln \left(x^{2}+1\right)} 3 \\
& \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
& =\frac{\ln \left(-x^{2}+1\right) \frac{1}{x^{2}+2} \ln (x+2) \frac{2 x}{x^{2}}}{\left[\ln \left(x^{2}+1\right)\right]^{2}} \\
& =\frac{\ln \left(x^{2}+1\right)-\frac{2 x-\ln (x+2)}{x^{2}+1}}{\left(\ln \left(-x^{2}+1\right)\right)^{2}} \\
& =\frac{\left(x^{2}+1\right) \ln \left(x^{2}+1\right)-2 x(x+2) \ln (x+2)}{(x+2)\left(x^{2}+1\right)\left[\ln \left(x^{2}+1\right)\right]^{2}}
\end{aligned}
$$

2 (a)

$$
\begin{aligned}
f(x) & =\frac{5-3 x}{4}, x \in R, y \in R \\
y & =\frac{5-3 x}{4} \\
y & =\frac{5}{4}-\frac{3}{4} x
\end{aligned}
$$

For $f^{-1}(x)$

$$
\begin{aligned}
x & =\frac{5}{4}-\frac{3}{4} y \\
4 x & =5-3 y \\
3 y & =5-4 x \\
y & =\frac{5}{3}-\frac{4}{3} x \\
-(x) & =\frac{5}{3}-\frac{4}{3} x
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& \int \frac{6}{3 x+1} \cdot d x \\
= & 2 \int \frac{3}{3 x+1} \cdot d x \\
= & 2 \int(3 x+1)+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int \frac{e^{x}+1}{e^{x}} \cdot d x \\
= & \int x+e^{-x} \cdot d x \\
= & \int^{-x}+c \\
= & \frac{3 x^{2}-5 x+7}{x} d x \\
= & \int_{1}^{2} 3 x-5+\frac{7}{x} \cdot d x \\
= & {\left[\frac{3 x^{2}}{2}-5 x+7 \ln x\right]^{2} } \\
= & (6-10+7 \ln 2)-\left(\frac{3}{2}-5+7 \ln 1\right) \\
= & 7 \ln 2-4+3 \frac{1}{2} \\
= & 7 \ln 2-1
\end{aligned}
$$

(d)

$$
\begin{align*}
y & =\sin 15^{\circ} \\
y & =\sin (45-30)^{\circ} \tag{1}\\
& =2 \cos 30-\cos 45 \sin 30 \\
& =\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \\
& =\frac{\sqrt{3}-1}{2 \sqrt{2}} \tag{2}
\end{align*}
$$

(e)

$$
\begin{align*}
y & =x^{-1}(x) \\
\frac{d y}{d x} & =\sqrt{1-x^{2}} \\
& =\left(1-x^{2}\right)^{-\frac{1}{2}} \\
\frac{d^{2} y}{d x^{2}} & =-\frac{1}{2}\left(1-x^{2}\right)^{-\frac{3}{2}} \times(-2 x) \tag{1}\\
& =\sqrt{\left(1-x^{2}\right)^{3}} \tag{1}
\end{align*}
$$

QUESTION 3
(a) $Q(m)=Q(n)$

$$
\begin{aligned}
a m^{2}+b m+\phi & =a n^{2}+b n+d \\
a\left(m^{2}-n^{2}\right) & =-b(m-n) \\
a(m+n) & =-b \\
m+n & =-\frac{b}{a}
\end{aligned}
$$

$=$ Sum of soob.
(b)

$$
\text { Range }-2 \leq y \leq 2
$$

$$
\text { Pemod }=\frac{2 \pi}{1 / 2}=4 \pi
$$

(c) (1) 10

$$
C_{5} \div 2=126
$$

(11) $\quad{ }^{8} c_{3}=56$
(iii) ${ }^{8} C_{4}=70$

4(a) (ii)

$$
\begin{aligned}
& 2 \cos (2 t+\pi / 6)=1 \\
& \cos (2 t+\pi 6)=\frac{1}{2} \\
& 2 t+\pi /= \pm \frac{\pi}{3}+2 n \pi \\
& 2 T=-\pi / 6 \pm \frac{\pi}{3}+2 n \pi \\
& t=n \pi-\frac{\pi}{12} \pm \pi / 6
\end{aligned}
$$

QUESTION 4

$$
\text { a) } \begin{aligned}
& \sqrt{3} \operatorname{Cos} t-\operatorname{Sin} 2 t=A \operatorname{Cos}(2 t+x) \\
& A \operatorname{Cos} \alpha=\sqrt{3} \\
& A \operatorname{Sin} \alpha=1 \\
& A=\sqrt{3+1}=2
\end{aligned}
$$

$$
\cos A=\sqrt{3} / 2 \quad \sin A=\frac{1}{2} \alpha=\pi / 6
$$

$$
\sqrt{3} \cos t-\operatorname{Sin} 2 t=2 \operatorname{Cos}(2 t+\pi / 6)
$$

$$
\begin{aligned}
& (n) \frac{n!}{(n-r)!!}+\frac{n!}{(n-r+1)!((1-1)!}=\frac{n!(n-r+1)+n!}{(n-r+1)!r!} \\
& =\frac{n!(n-r+1-r)}{(n-r+1)!r!}=\frac{n+1!}{(n-r+1)!r!}
\end{aligned}
$$

$$
\text { (c) } n-1-\sin \pi-\sin \pi=0-1=-1
$$

$$
n=2 \frac{1}{2} \sin 2 \pi-\frac{3}{2} \sin \pi=0-c=0
$$

$$
n=3 \frac{1}{3} \operatorname{Sin} 3 \pi-\frac{1}{3} \operatorname{Sin} \frac{3 \pi}{2}=0-\frac{1}{3}=1 / 3
$$

(a) (i)

$$
\text { (i) } \begin{aligned}
y & =\ln \left(x^{2}+4\right) \\
y^{\prime} & =\frac{2 x}{x^{2}+4} \\
y^{\prime \prime} & =\frac{\left(x^{2}+4\right) 2-2 x \times 2 x}{\left(x^{2}+4\right)^{2}} \\
& =\frac{-2 x^{2}+8}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

(ii) $y=x \tan ^{-1} x$

$$
\begin{aligned}
y^{\prime} & =\tan ^{-1} \frac{x}{2} \times 1+x \times \frac{2}{4+x^{2}} \\
& =\tan ^{-1} \frac{x}{2}+\frac{2 x}{4 x^{2}}
\end{aligned}
$$

$x=2 \quad m=\frac{\pi}{4}+\frac{1}{2} y=-\frac{11}{2}$ $\operatorname{eqn} y-\frac{\pi}{2}=\left(\frac{\pi}{4}+\frac{1}{2}\right)(x-2)$

$$
\begin{aligned}
& y=x\left(\frac{\pi}{4}+\frac{1}{2}\right)-\frac{\pi}{2}-1+\frac{\pi}{2} \\
& y=x\left(\frac{\pi}{4}+\frac{1}{2}\right)-1
\end{aligned}
$$

Question 5
a)

10 m
i)

$$
\begin{aligned}
& \tan 50^{\circ}=\frac{h}{3.5} \\
& h=3 \cdot 5 \tan 50^{\circ} \\
& \tan 50^{\circ}=\frac{h}{x} \\
& x=\frac{3 \cdot 5 \tan 50^{\circ}}{\tan 50^{\circ}} \\
& x=3.5 \\
& E F=10-2(3.5) \\
& =3 \mathrm{~m}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\cos 50^{\circ} & =\frac{3.5}{S} \\
S & =\frac{3.5}{\cos 50^{\circ}} \\
S A & =2 \times\left[\frac{1}{2} \times 7 \times \frac{3.5}{\cos 50^{\circ}}\right]+2 \times\left[\frac{3+10}{2} \times \frac{3.5}{\cos 50^{\circ}}\right] \\
& =108.9 \mathrm{~m}^{2} \quad \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

b)

$$
\begin{aligned}
L H S & =\sec 2 A+\tan 2 A \\
& =\frac{1}{\cos 2 A}+\frac{\sin 2 A}{\cos 2 A} \\
& =\frac{1+\sin 2 A}{\cos 2 A} \\
& =\frac{1+2 \sin A \cos A}{\cos ^{2} A-\sin ^{2} A} \\
& =\frac{\sin ^{2} A+\cos ^{2} A+2 \sin A \cos A}{\cos ^{2} A-\sin ^{2} A} \\
& =\frac{(\cos A+\sin A)^{2}}{(\cos A-\sin A)(\cos A+\sin A)} \\
& =\frac{\cos A+\sin A}{\cos A-\sin A} \\
& =R H S
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{8 \cos x}{1+4 \sin ^{2} x} d x \\
& =\int_{1}^{\sqrt{3}} \frac{8 \cos x}{1+u^{2}} \cdot \frac{d u}{2 \cos x} \\
& =4 \int_{1}^{\sqrt{3}} \frac{d u}{1+u^{2}} \\
& x=\frac{\pi}{6} \\
& x=\frac{\pi}{3} \\
& u=2 \sin \frac{\pi}{6} \\
& u=2 \sin \frac{\pi}{3} \\
& u=1 \\
& u=\sqrt{3} \\
& =4\left[\tan ^{-1} n\right]_{1}^{\sqrt{3}} \\
& =4\left[\tan ^{-1} \sqrt{3}-\tan ^{-1} 1\right] \\
& =4\left[\frac{\pi}{3}-\frac{\pi}{4}\right] \\
& =\frac{\pi}{3}
\end{aligned}
$$

d) $P(x)=24 x^{3}-14 x^{2}-63 x+45$ If $\frac{3}{2}$ is a zero, $(2 x-3)$ is a factor of $P(x)$.

$$
\begin{aligned}
& 2 x-3 \underset{\frac{12 x^{2}+11 x-15}{24 x^{3}-14 x^{2}-63 x+45}}{\frac{24 x^{3}-36 x^{2}}{22 x^{2}-63 x}} \frac{22 x^{2}-33 x}{-30 x+45} \\
& \frac{-30 x+45}{0} \\
& P(x)=(2 x-3)\left(12 x^{2}+11 x-15\right) \\
& =(2 x-3) \frac{(12 x+20)(12 x-9)}{\frac{12}{4 \times 3}} \\
& =(2 x-3)(3 x+5)(4 x-3)
\end{aligned}
$$

Question 6
a)

$$
\begin{aligned}
& \sin 2 t+4 \sin t+2 \cos t=-4 \\
& 2 \sin t \cos t+4 \sin t+2 \cos t+4=0 \\
& 2 \sin t(\cos t+2)+2(\cos t+2)=0 \\
& \begin{array}{ll}
(\cos t+2)(2 \sin t+2)=0 \\
\cos t+2=0 & 2 \sin t+2=0 \\
\cos t=-2 & 2 \sin t=-2
\end{array}
\end{aligned}
$$

No solution

b) $t=\tan \left(\frac{\theta}{2}\right)$

$$
\begin{aligned}
\frac{1-2 \sin \theta}{2 \cos \theta+1} & =\frac{1-2\left(\frac{2 t}{1+t^{2}}\right)}{2\left(\frac{1-t^{2}}{1+t^{2}}\right)+1} \times \frac{1+t^{2}}{1+t^{2}} \\
& =\frac{1+t^{2}-4 t}{2-2 t^{2}+1+t^{2}} \\
& =\frac{t^{2}-4 t+1}{3-t^{2}}
\end{aligned}
$$

c) i)

$$
\begin{align*}
& y=e^{x} \\
& y=2+3 e^{-x} \tag{2}
\end{align*}
$$

sub. (1) into (2)

$$
e^{x}=2+3 e^{-x}
$$

multiply both sides by e^{x}

$$
\begin{aligned}
& \left(e^{x}\right)^{2}=2 e^{x}+3 \\
& \left(e^{x}\right)^{2}-2 e^{x}-3=0 \\
& \left(e^{x}-3\right)\left(e^{x}+1\right)=0 \\
& e^{x}=3 \text { or } e^{x}=-1
\end{aligned}
$$

$x=\ln 3 \quad$ No socutain since $e^{x}>0$.
sub...into (1)

$$
\begin{aligned}
& y=e^{\ln 3} \\
& y=3
\end{aligned}
$$

\therefore has coordinates $(\ln 3,3)$
ii)

$$
\begin{aligned}
A & =\int_{0}^{\ln 3}\left(2+3 e^{-x}-e^{x}\right) d x \\
& =\left[2 x-3 e^{-x}-e^{x}\right]_{0}^{\ln 3} \\
& =2 \ln 3-3 e^{\ln 3}-e^{\ln 3}-\left(2(0)-3 e^{-(0)}-e^{0}\right) \\
& =2 \ln 3-3 e^{\ln \left(\frac{1}{3}\right)}-3-(-3-1) \\
& =2 \ln 3-3\left(\frac{1}{3}\right)+1 \\
& =2 \ln 3 \text { units }
\end{aligned}
$$

d) i)

$$
\begin{aligned}
& \tan (\theta+\alpha)=\frac{30}{x} \\
& \theta+\alpha=\tan ^{-1}\left(\frac{30}{x}\right) \\
& \tan (\alpha)=\frac{10}{x} \\
& \alpha=\tan ^{-1}\left(\frac{10}{x}\right) \\
& \theta=(\theta+\alpha)-\alpha \\
& =\tan ^{-1}\left(\frac{30}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)
\end{aligned}
$$

ii) as $x \rightarrow 0$

$$
\begin{gathered}
\frac{30}{x} \rightarrow \infty \\
\tan ^{-1}\left(\frac{30}{x}\right) \rightarrow \frac{\pi}{2}
\end{gathered}
$$

similarly, $\tan ^{-1}\left(\frac{10}{x}\right) \rightarrow \frac{\pi}{2}$

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow 0}\left(\tan ^{-1}\left(\frac{30}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)\right) \\
& =\frac{\pi}{2}-\frac{\pi}{2} \\
& =0
\end{aligned}
$$

iii) as $x \rightarrow \infty$

$$
\begin{gathered}
\frac{30}{x} \rightarrow 0 \\
\tan ^{-1}\left(\frac{30}{x}\right) \rightarrow 0
\end{gathered}
$$

similarly, $\tan ^{-1}\left(\frac{10}{x}\right) \rightarrow 0$

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow \infty}\left(\tan ^{-1}\left(\frac{30}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)\right) \\
& \quad=0-0 \\
& \quad 00
\end{aligned}
$$

iv) $\theta=\tan ^{-1}\left(\frac{30}{x}\right)-\tan ^{-1}\left(\frac{10}{x}\right)$

$$
\begin{aligned}
\frac{d v}{d x} & =\frac{1}{1+\left(\frac{30}{x}\right)^{2}} \cdot \frac{-30}{x^{2}}-\frac{1}{1+\left(\frac{10}{x}\right)^{2}} \cdot \frac{-10}{x^{2}} \\
& =\frac{-30}{x^{2}+900}+\frac{10}{x^{2}+100}
\end{aligned}
$$

$$
=\frac{-30\left(x^{2}+100\right)+10\left(x^{2}+900\right)}{\left(x^{2}+900\right)\left(x^{2}+100\right)}
$$

For stationary points let $\frac{d \theta}{d x}=0$.

$$
\begin{aligned}
&-30 x^{2}-3000+10 x^{2}+9000=0 \\
&-20 x^{2}+6000=0 \\
& 20 x^{2}=6000 \\
& x^{2}=300 \\
& x= \pm \sqrt{300} \\
& x=10 \sqrt{3} \mathrm{~m} \text { since } x \text { is a distance }
\end{aligned}
$$

θ is conthurons for $x>0$.
From the limits in (ii) \& (iii)
θ is a maximum when $x=10 \sqrt{3} \mathrm{~m}$.

