## SYDNEY BOYS HIGH SCHOOL <br> MOORE PARK, SURRY HILLS

## June 2012

## Assessment Task 3

Year 12

## Mathematics Extension 1

## General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question if full marks are to be awarded.
- Answer in simplest exact form unless otherwise instructed.


## Total Marks - 62

- Attempt sections A - C.
- Start each NEW section in a separate answer booklet.
- Hand in your answers in 3 separate bundles:

Section A
Section B
Section C

Examiner: J. Chen

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

## STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

## START A NEW ANSWER BOOKLET

## SECTION A [20 marks]

For these 10 questions there is one correct answer per question. Write down in your answer booklet the question number and letter of your answer.

1. 1.58 radians approximately equal
(A) $\quad 90^{\circ} 31^{\prime}$
(B) $90^{\circ} 32^{\prime}$
(C) $\quad 90^{\circ} 53^{\prime}$
(D) None of the above
2. 

equals
(A) $\frac{1}{3}$
(B) 3
(C) 0
(D) 1
3.

$$
\int \frac{d x}{x^{2}+4 x+5}
$$

equals
(A) $\tan ^{-1}\left(\frac{x+2}{2}\right)+C$
(B) $\tan ^{-1}\left(\frac{x}{2}\right)+C$
(C) $\tan ^{-1}(x+2)+C$
(D) $2 \tan ^{-1}\left(\frac{x}{2}\right)+C$
4.

$$
\int_{0}^{\frac{\pi}{4}}\left(1+\tan ^{2} x\right) \cdot d x
$$

equals
(A) $\quad-1$
(B) 0
(C) 1
(D) 2
5. The domain of the function

$$
y=2 \sin ^{-1}\left(\frac{x}{2}\right)
$$

is
(A) $-2 \leq x \leq 2$
(B) $-\frac{1}{2} \leq x \leq \frac{1}{2}$
(C) $-2 \leq y \leq 2$
(D) $\quad-\frac{1}{2} \leq y \leq \frac{1}{2}$
6. The diagram below shows the graph of a function.


A possible equation for the function is
(A) $y=4 \sin ^{-1}(3 x)$
(B) $y=4 \sin ^{-1}\left(\frac{x}{3}\right)$
(C) $y=\frac{1}{4} \sin ^{-1}(3 x)$
(D) $\quad y=\frac{1}{4} \sin ^{-1}\left(\frac{x}{3}\right)$
7.

$$
\int_{-2}^{2} \sqrt{4-x^{2}} \cdot d x
$$

equals
(A) 0
(B) $2 \pi$
(C) $4 \pi$
(D) $\frac{\pi}{2}$
8. The graph represents the velocity $v \mathrm{~m} / \mathrm{s}$ of a particle after $t$ seconds travelling in a straight line. The particle starts from rest at the origin.


When does the particle return to the origin?
(A) $t=2$
(B) $t=4$
(C) $\quad t=10$
(D) The particle does not return to the origin.
9.

$$
\frac{d}{d x}\left(\frac{\sin x}{x}\right)
$$

Equals
(A) $\frac{x \cos x+\sin x}{x^{2}}$
(B) $\frac{x \cos x-\sin x}{x^{2}}$
(C) $\frac{\sin x-x \cos x}{x^{2}}$
(D) $\frac{\sin x+x \cos x}{x^{2}}$
10. How many solutions does the equation $\sin 2 x=\cos x$ have in the domain $0 \leq x \leq 2 \pi$ ?
(A) 0
(B) 1
(C) 2
(D) None of the above

End of Multiple Choice Section
11. Find the inverse function $f^{-1}$ of the function $f$, defined by $f(x)=2 \log _{e} x+3$.
Express the result in the form $y$ in terms of $x$.
12. Find the exact value of

$$
\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{3}{5}
$$

13. State the domain and range of the function:

$$
f(x)=2 \cos ^{-1} \frac{x}{3}
$$

14. 

(i) Differentiate $x \sin ^{-1} x+\sqrt{1-x^{2}}$.
(ii) Hence evaluate

$$
\int_{0}^{1} \sin ^{-1} x \cdot d x
$$

## End of Section A

## START A NEW ANSWER BOOKLET

## SECTION B [20 marks]

1. Find $\int x \sqrt{1+x^{2}} . d x$, using the substitution $u=1+x^{2}$.
2. Find

$$
\int_{0}^{\pi} \sin ^{2} x . d x
$$

3. Evaluate

$$
\lim _{x \rightarrow 0} \frac{\tan 6 x}{\sin 4 x}
$$

4. 

(i) Show that there is a root to the equation $\sin x=x-\frac{1}{2}$ between $x=0.5$ and $x=1.8$.
(ii) Taking $x=1.2$ as a first approximation to this solution, apply Newton's method once to find a closer approximation to the solution. Give your answer correct to two decimal places.
5.
(i) Write down a primitive function of $e^{f(x)} \cdot f^{\prime}(x)$.
(ii) Hence, evaluate

$$
\int_{-1}^{1} \frac{2 e^{\cos ^{-1} x}}{\sqrt{1-x^{2}}} \cdot d x
$$

6. The surface area of a cube is increasing at a rate of $12.6 \mathrm{~cm}^{2}$ per second and initially each edge is 10 cm .
(i) If it maintains its cubic shape, find an expression in terms of $t$ for the surface area of the cube after $t$ seconds.
(ii) Hence, or otherwise, find the rate at which the volume of the cube is increasing after 10 seconds.

## End of Section B

## START A NEW ANSWER BOOKLET

## SECTION C [22 marks]

1. 

(i) Prove that

$$
\frac{1}{x^{2}+1}-\frac{1}{x^{2}+3}=\frac{2}{\left(x^{2}+1\right)\left(x^{2}+3\right)}
$$

(ii) Hence determine the value of

$$
\int_{-\sqrt{3}}^{1} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}
$$

2. 

(i) Prove by Mathematical Induction that if $x$ is a positive integer then $(x+1)^{n}-1$ is divisible by $x$ for all positive integers $n>$ 0 .
(ii) Hence, deduce that $15^{n}-5^{n}-3^{n}+1$ is divisible by 8 for all positive integers $n>0$.
3. A particle moves with acceleration $\ddot{x}=2 x^{3}-10 x$ where $x$ is the displacement in metres. Initially $v=0$ when $x=-1$.
(i) Find $v$ in terms of $x$.
(ii) Explain why there is a restriction on $x$ and clearly indicate the restriction.
(iii) Describe briefly what would have happened if the initial conditions where $v=0$ when $x=0$.
4. Assume that tides rise and fall in Simple Harmonic Motion. On June 25 the depth of water in a harbour entrance at low tide is 2 metres at 11 a.m. At the following high tide at 5:20 p.m. the depth is 6 metres.

Calculate the first time period during which a yacht can safely enter the harbour if minimum depth of 3.5 metres of water is needed.

End of Section C<br>End of Exam

$$
\begin{aligned}
& 1\left(B 0^{\circ} 32^{\prime}\right. \\
& 2 \lim _{x \rightarrow 0} \frac{\tan 3 x}{x} \\
& =\lim _{3 x \rightarrow 0} \frac{\tan 3 x}{3 x} \times 3 \\
& =1 x^{3} \\
& =3
\end{aligned}
$$

7. 

$$
\int_{-2}^{1} \sqrt{4-x^{2}} d
$$

$$
=\frac{1}{2} \times \pi \times 2^{2}
$$



$$
=2 \pi
$$

 $\therefore$ brifim
a. $\quad \frac{d}{d x}\left(\frac{\sin x}{x}\right)$

$$
\begin{align*}
& =\frac{x \cdot \cos x-\sin x \cdot!}{x^{2}} \\
& =\frac{2 \cos x-3 \sin x}{x^{2}} \tag{3}
\end{align*}
$$

10. $\quad \sin 2 x=\cos x$
$\therefore 2 \sin x \cos x=\cos x$
$\therefore 2003(25 i+2=1)=10$
$\therefore$ cosion or arman
$\therefore x_{m}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{6}, \frac{3 \pi}{9}$
4 sobutiont


$$
\text { 5. } \begin{aligned}
y & =2 \sin ^{-1}\left(\frac{x}{2}\right) \\
-1 & \leq \frac{x}{2} \leq 1 \\
-2 & \leq x \leq a
\end{aligned}
$$

$$
\begin{equation*}
6 \cdot y=4 \sin ^{-1} \frac{x}{3} \tag{3}
\end{equation*}
$$

12. $x=\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{3}{5}$

$$
\begin{aligned}
\tan x & =\frac{\tan \left(\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{3}{5}\right)}{1-\tan ^{2}\left(\tan ^{-1} \frac{1}{2}\right)+\tan ^{-1}\left(\tan ^{-1} \frac{3}{5}\right)} \\
& \left.=\frac{\frac{1}{4}+\frac{3}{5}}{\frac{1}{2}}\right) \\
& =\frac{\left(\frac{17}{20}\right)}{\left(\frac{17}{23}\right)} \\
& =1 \\
\therefore x & =\frac{\pi}{4}
\end{aligned}
$$

13. $\quad f(x)=2 \cos ^{-1} \frac{2}{3}$

Demani- - $\quad-1 \leq \frac{x}{3} \leq 1$

$$
\therefore-3 \leqslant x \leqslant 3
$$

Renge

$$
\begin{aligned}
& 0 \leq \cos ^{-1} \frac{x}{3} \leq \pi \\
& 0 \leq 2 \cos -\frac{x}{3} \leq 2 \pi \\
& 0 \leq y \leq 2 \pi
\end{aligned}
$$

14. i) $\frac{d}{d x}\left(x \sin ^{-1} 3+\sqrt{1-x^{2}}\right)$

$$
\begin{align*}
& =\sin ^{-1} x \cdot 1+x \cdot \frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2} \cdot \frac{1}{\sqrt{1-x^{2}}} x-2 x  \tag{2}\\
& =\sin ^{-1} x
\end{align*}
$$

(ii)

$$
\begin{align*}
\int_{0}^{1} \sin ^{-1} x a x & =\left[x \sin ^{-1} x+\sqrt{1-x_{2}^{2}}\right]_{0}^{1} \\
& =\left[1 \cdot \sin ^{-1} 1+0\right]-[0+1] \\
& =\frac{\pi}{2}-1 \tag{2}
\end{align*}
$$

## 2012 Extension 1 Mathematics Task 3:

## Solutions-Section B

1. Find $\int x \sqrt{1+x^{2}} . d x$, using the substitution $u=1+x^{2}$.

Solution: $\frac{d u}{d x}=2 x$,

$$
\begin{aligned}
\mathrm{I} & =\frac{1}{2} \int \frac{d u}{d x} \cdot u^{\frac{1}{2}} \cdot d x, \\
& =\frac{1}{2} \cdot u^{\frac{3}{2}} \cdot \frac{2}{3}+c \\
& =\frac{\left(1+x^{2}\right) \sqrt{1+x^{2}}}{3}+c .
\end{aligned}
$$

2. Find

$$
\int_{0}^{\pi} \sin ^{2} x d x
$$

$$
\begin{aligned}
\text { Solution: } \mathrm{I} & =\frac{1}{2} \int_{0}^{\pi}(1-\cos 2 x) d x \\
& =\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi} \\
& =\frac{1}{2}\{\pi-0-(0-0)\} \\
& =\frac{\pi}{2}
\end{aligned}
$$

3. Evaluate

$$
\lim _{x \rightarrow 0} \frac{\tan 6 x}{\sin 4 x}
$$

Solution: First method-

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan 6 x}{\sin 4 x} & =\lim _{x \rightarrow 0} \frac{\tan 6 x}{6 x} \cdot \frac{4 x}{\sin 4 x} \cdot \frac{6}{4}, \\
& =1 \times 1 \times \frac{6}{4}, \\
& =\frac{3}{2} .
\end{aligned}
$$

Solution: Second method-

$$
\begin{aligned}
\frac{\tan 6 x}{\sin 4 x} & =\frac{\sin 6 x}{\cos 6 x \cdot \sin 4 x}, \\
& =\frac{\sin 4 x \cdot \cos 2 x+\cos 4 x \cdot \sin 2 x}{\cos 6 x \cdot \sin 4 x}, \\
& =\frac{\sin 4 x \cdot \cos 2 x}{\cos 6 x \cdot \sin 4 x}+\frac{\cos 4 x \cdot \sin 2 x}{\cos 6 x \times 2 \sin 2 x \cdot \cos 2 x}, \\
& =\frac{\cos 2 x}{\cos 6 x}+\frac{\cos 4 x}{2 \cos 6 x \cdot \cos 2 x} \\
\therefore \lim _{x \rightarrow 0} \frac{\tan 6 x}{\sin 4 x} & =\frac{1}{1}+\frac{1}{2 \times 1 \times 1}, \\
& =\frac{3}{2} .
\end{aligned}
$$

4. (a) Show that there is a root to the equation $\sin x=x-\frac{1}{2}$
between $x=0.5$ and $x=1.8$.
Solution: Put $f(x)=x-\sin x-\frac{1}{2}$,

$$
f(0.5) \approx-0.48,
$$

$$
f(1.8) \approx 0.33
$$

$\therefore$ There is a root where $0.5<x<1.8$.
(b) Taking $x=1.2$ as a first approximation to this solution, apply Newton's method once to find a closer approximation to the solution. Give your answer correct to two decimal places.

Solution: $f^{\prime}(x)=1-\cos x$,

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}, \\
& =1.2-\frac{1.2-\sin 1.2-0.5}{1-\cos 1.2}, \\
& \approx 1.56(2 \text { dec. pl. })
\end{aligned}
$$

5. (a) Write down a primitive function of $e^{f(x)} \cdot f^{\prime}(x)$.

Solution: $e^{f(x)}$ or $e^{f(x)}+c$.
(b) Hence evaluate

$$
\int_{-1}^{1} \frac{2 e^{\cos ^{-1} x}}{\sqrt{1-x^{2}}} \cdot d x
$$

$$
\text { Solution: } \begin{aligned}
\mathrm{I} & =-2 \int_{-1}^{1} \frac{-1 \times e^{\cos ^{-1} x}}{\sqrt{1-x^{2}}} \cdot d x \\
& =-2\left[e^{\cos ^{-1} x}\right]_{-1}^{1} \\
& =-2\left(1-e^{\pi}\right) \\
& =2\left(e^{\pi}-1\right)
\end{aligned}
$$

6. The surface area of a cube is increasing at a rate of $12.6 \mathrm{~cm}^{2}$ per second and initially each edge is 10 cm .
(a) If it maintains its cubic shape, find an expression in terms of $t$ for the surface area of the cube after $t$ seconds.

Solution: Let edge length be $x$, surface area be $a$, and volume be $v$.

$$
\begin{aligned}
\frac{d a}{d t} & =12.6 \\
a & =\int 12.6 d t \\
& =12.6 t+c \\
\text { When } t & =0, \quad a=6 \times 10^{2}=600, \\
\therefore a & =12.6 t+600 .
\end{aligned}
$$

(b) Hence or otherwise, find the rate at which the volume of the cube is increasing after 10 seconds.

Solution: First method-

$$
\begin{array}{rlrl}
v & =x^{3}, & \begin{aligned}
a & =6 x^{2}, \\
\frac{d v}{d x} & =3 x^{2},
\end{aligned} & \frac{d a}{d x}=12 x . \\
\frac{d v}{d t} & =\frac{d v}{d x} \times \frac{d x}{d a} \times \frac{d a}{d t}, & \\
& =3 x^{2} \times \frac{1}{12 x} \times 12.6, \\
& =3.15 x . \\
\text { When } t & =10, \\
6 x^{2} & =12.6 t+600, \\
& =726, \\
x^{2} & =121, \\
x & =11 \text { as } x>0 . \\
\therefore \frac{d v}{d t} & =3.15 \times 11, \\
& =34.65 .
\end{array}
$$

So the volume is increasing at $34.65 \mathrm{~cm}^{3} / \mathrm{s}$.

Solution: Second method-

$$
\begin{aligned}
6 x^{2} & =12.6 t+600, \\
x^{2} & =2.1 t+100, \\
x^{3} & =(2.1 t+100)^{3 / 2}, \\
v & =(2.1 t+100)^{3 / 2}, \\
\frac{d v}{d t} & =2.1 \times \frac{3}{2}(2.1 t+100)^{1 / 2}, \\
& =3.15 \sqrt{2.1 t+100} .
\end{aligned}
$$

When $t=10$,

$$
\begin{aligned}
\frac{d v}{d t} & =3.15 \sqrt{2.1(10)+100} \\
& =34.65
\end{aligned}
$$

So the volume is increasing at $34.65 \mathrm{~cm}^{3} / \mathrm{s}$.

Solution: Third method-

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{d v}{d a} \times \frac{d a}{d t} . \\
a & =6 x^{2}, \\
x & =\sqrt{\frac{a}{6}} .
\end{aligned} \begin{aligned}
v & =x^{3}, \\
& =\sqrt{\frac{a^{3}}{6^{3}}}, \\
& =\frac{a^{3 / 2}}{6 \sqrt{6}} . \\
\frac{d v}{d a} & =\frac{3}{2} \cdot \frac{a^{1 / 2}}{6 \sqrt{6}}, \\
& =\frac{\sqrt{a}}{4 \sqrt{6}} .
\end{aligned}
$$

When $t=10, a=726, \therefore \frac{d v}{d t}=\frac{\sqrt{726}}{4 \sqrt{6}} \times 12.6$,

$$
\begin{aligned}
& =\frac{11}{4} \times 12.6, \\
& =34.65 .
\end{aligned}
$$

So the volume is increasing at $34.65 \mathrm{~cm}^{3} / \mathrm{s}$.

Section C
L. (i) Lits $=\frac{\left(x^{2}+3\right)-\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$

$$
=\frac{2}{\left(x^{2}+1\right)\left(x^{2}+3\right)}
$$

$=$ RHS QED
(V) $\int_{-\sqrt{x}}^{1} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$
$=\frac{1}{2} \int_{-\sqrt{3}}^{1}\left(\frac{1}{x^{2}+1}-\frac{1}{x^{2}+3}\right) d x$
$z \frac{1}{2}\left[\tan ^{-1} x-\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right]_{-\sqrt{3}}^{1}$

$$
=5 / 2 \pi\left(\frac{\pi}{4}-\frac{1}{\sqrt{3}} \cdot \frac{\pi}{6}\right)-\left(-\frac{\pi}{3}-\frac{1}{\sqrt{3}}\left(-\frac{\pi}{4}\right)\right)
$$

$$
=\frac{3}{2}\left[\frac{\pi}{4}-\frac{\pi}{6 \sqrt{3}}+\frac{\pi}{3}-\frac{\pi}{4 \sqrt{3}}\right]
$$

$$
=\frac{\pi}{2}\left(\frac{7}{12}-\frac{4+6}{2+\sqrt{3}}\right)
$$

$$
=\frac{\pi}{2}\left(\frac{7}{2}-\frac{5}{12 \sqrt{3}}\right)
$$

$=\frac{R_{2}}{2}\left(\frac{7 \sqrt{3}-5}{12 \sqrt{3}}\right)$
[3]
2.(11) $p(n): x \mid(x+1)^{n}-1$ if

$$
p(i): \text { if } x=1,(x+1)^{n}-1
$$

$\therefore$ in whech
is dindre by $x$.
$\because p(1)$ is true.
$p(k)$ : Assume truce foe $n=t$ ie $x)(x+i)^{k}-1$
$\therefore(x+1)^{k}-1=R x$,
$P(k+i):$ PTP that $p(k) \rightarrow p(k+1$,
Now when $n=k+1$

$$
\begin{aligned}
& (x+1)^{k+1}-1 \\
= & (x+1)^{k}(x+1)-1 \\
= & (R x+1)(x+1)-1
\end{aligned}
$$

Soy assumption

$$
\begin{aligned}
& =R x^{2}+R x+x+1-1 \\
& =x(R x+R+i)
\end{aligned}
$$

Which is divosile by $x$.
$\therefore$ Aniee $p(l)$ is ture arel $p(x) \rightarrow p(k+1):)$ thew by PMI, PCM is ture.

$$
\begin{aligned}
& \text { (ii) } 15^{n}-5^{-n}-3^{n}+1 \\
& =5^{n}\left(3^{n}-1\right)-\left(3^{n}-1\right) \\
& =\left(5^{n}-1\right)\left(3^{n}-1\right) \\
& =4 R \cdot 25 \text { (Acoy) RSS } \\
& =8(R S) \quad Q B D[2]
\end{aligned}
$$

3. $\quad x=2 x^{3}-10 x$
$V=0, x=-1$ when $f=0$

$$
\text { (i) } \begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =2 x^{3}-10 x \\
\therefore \frac{1}{2} v^{2} & =\int\left(2 x^{2}-10\right) d x+C \\
& =\frac{2 x^{4}}{4}-\frac{10 x^{2}}{2}+C \\
v 2 & =x^{4}-10 x^{2}+c^{\prime} \\
v & =0 \text { When } x=-1,20 \\
0 & =1-10+c^{1} \\
c & =9
\end{aligned}
$$

So $v^{2}=x^{4}-10 x^{2}+9$

$$
V= \pm \sqrt{x^{4}-10 x^{2}+9}
$$

(b)

$$
\begin{aligned}
& \therefore x^{2} \leq 1 \text { or } x^{2} \geqslant 9 \\
& \because\left(x^{2}-9\right)\left(x^{2}-1\right) \geqslant 0 \\
& \therefore-\mid \leqslant x \leqslant 1 \text { or } x \leqslant-3+x \geqslant 5
\end{aligned}
$$


ie As ines particle stents [2] at-1, is is limited to $-1 \leqslant x<1$
(iii) If $N=0$ when $x=0$ the the accellution is zero, to the paticelet does no moe.

4
1100 am low $a=2$
1720 lom Hz a
$\frac{+620}{2346}$ has

$\begin{aligned} \text { Penned } 12140 & =760 \mathrm{~min} \\ & =120 / \mathrm{ms}\end{aligned}$
"Dguibamin" $=x=4 \mathrm{~m}$

$$
\begin{aligned}
& \left(760=\frac{2 \pi}{n} \quad 12 \frac{2}{3}=\frac{2 \pi}{n}\right. \\
& \left.n=\frac{2 \pi}{760}\right) \quad n=\frac{2 \pi}{12^{23}} \\
& (=0.008267)=0.29604
\end{aligned}
$$

Hence $x=-2 \cos (n \cdot t)+4$
Fer $x=3.5 \mathrm{~m}$

$$
\begin{aligned}
x & =3.8 \\
3.5 & =-2 \cos (n t)+4 \\
-0.5 & =-2 \cos (n t) \\
+0.25 & =\cos (t) \\
n t & =\cos ^{-1}(0.25) \\
t_{1} & =2 h 39^{\prime}+11: 00 \\
& =13.39 \\
t_{2} & =23: 40-2: 39 \\
& =21: 01
\end{aligned}
$$

