SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

HSC Assessment Task 3

Mathematics Extension 1

General Instructions

- Reading Time-5 Minutes.
- Working time - 90 Minutes.
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each question in Section II is to be answered in a separate booklet.
- Marks may NOT be awarded for messy or badly arranged work.
- Answer in simplest EXACT form unless otherwise instructed.
- A reference sheet is provided.

Total Marks - 61
Section I (7 Marks)
Answer questions 1-7 on the Multiple Choice answer sheet provided.

Section II (54 Marks)

For Questions 8-10, start a new answer booklet for each question.

Examiner: J. Chan

Section I

10 marks

Attempt Questions 1-7
Use the multiple-choice answer sheet for Questions 1-7

1) What is the domain of the function $f(x)=5 \sin ^{-1}\left(\frac{x}{3}\right)$?
(A) $-\frac{5 \pi}{2} \leq x \leq \frac{5 \pi}{2}$
(B) $-3 \leq x \leq 3$
(C) $-5 \leq x \leq 5$
(D) $\quad-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$
2) Which of the following is the exact value of $\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9-x^{2}}} d x$?
(A) $\quad-\pi$
(B) $\quad-\frac{\pi}{4}$
(C) $\frac{\pi}{4}$
(D) π
3) Given $f(x)=\frac{3}{x}-4, f^{-1}(4)=$?
(A) $-\frac{13}{4}$
(B) $\frac{13}{4}$
(C) $\frac{3}{8}$
(D) $-\frac{3}{8}$
4) The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?
(A) $\quad t=0$
(B) $\quad t=2, t=8$ and $t=14$
(C) $\quad t=5$ and $t=11$
(D) $t=8$
5) Using the substitution $u=\log _{e} x$, which of the following is equal to $\int_{e}^{e^{2}} \frac{1}{x \log _{e} x} d x$?
(A) $\int_{e}^{e^{2}} \frac{d u}{u}$
(B) $\int_{e}^{e^{2}} \frac{d u}{e^{u} u}$
(C) $\int_{1}^{2} \frac{d u}{u}$
(D) $\int_{1}^{2} \frac{d u}{e^{u} u}$
6) The acceleration of a particle is given by $a=6 x^{2}-4 x-3$, where x is the displacement in cm . The particle initially is at the origin and has a velocity of $3 \mathrm{~cm} / \mathrm{s}$. What is the speed when the particle is at $x=3$?
(A) $2 \sqrt{7} \mathrm{~cm} / \mathrm{s}$
(B) $3 \sqrt{7} \mathrm{~cm} / \mathrm{s}$
(C) $\sqrt{41} \mathrm{~cm} / \mathrm{s}$
(D) $\sqrt{57} \mathrm{~cm} / \mathrm{s}$
7) What is the value of $\cos ^{-1}(\cos (3 \pi+\alpha))$ where α is an acute angle?
(A) $3 \pi+\alpha$
(B) α
(C) $\pi+\alpha$
(D) $\pi-\alpha$

End of Section I

BLANK PAGE

Section II

54 marks

Attempt Questions 8-10
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 8-10, your responses should include relevant mathematical reasoning and/or calculations.

Question 8 (16 marks) Use a SEPARATE writing booklet.
(a) Find the primitive of $2 \sin ^{2} x-x^{2}$
(b) Show that $\frac{d}{d x}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)=\cos ^{-1} x$
(c) The shaded area is represented by $\int_{0}^{2} \sin ^{-1} \frac{x}{2} d x$.

Explain why the shaded area is equal to $\pi-2 \int_{0}^{\frac{\pi}{2}} \sin y d y$.

Question 8 (continued)
(d) Consider the function $f(x)=1+\frac{2}{x-3}$ for $x>3$.
i) Find the inverse function $f^{-1}(x)$. $\mathbf{1}$
ii) State the domain and range of the inverse function. 2
iii) Hence sketch $y=f^{-1}(x)$.
(e) The two equal sides of an isosceles triangle are of length 6 cm . If the angle between them is increasing at the rate of 0.05 radians per second, find the rate at which the area of the triangle is increasing when the angle between the equal sides is $\frac{\pi}{6}$ radians.
(f) A particle moves in a straight line so that at any time t, its displacement from a fixed point is x and its velocity is v.

If the acceleration is $3 x^{2}$ and $v=-\sqrt{2}, x=1$ when $t=0$, find x as a function of t.

End of Question 8

Question 9 (19 marks) Use a SEPARATE writing booklet.
(a) i) Show that $\frac{u^{3}}{u+1}=u^{2}-u+1-\frac{1}{u+1}$
ii) Hence, by using the substitution $u=\sqrt{x}$, show that

$$
\int_{0}^{4} \frac{x}{1+\sqrt{x}} d x=\frac{16}{3}-\ln 9
$$

(b) i) Use the derivative of $\cos \theta$ to show that

$$
\frac{d}{d \theta}(\sec \theta)=\sec \theta \tan \theta
$$

ii) Use the substitution $x=\sec \theta-1$ to find the exact value of

$$
\int_{\sqrt{2}-1}^{1} \frac{d x}{(x+1) \sqrt{x^{2}+2 x}}
$$

(c) A particle, moving along the x-axis, starts at the origin with an initial velocity v_{0}. Its acceleration is given by $\frac{d^{2} x}{d t^{2}}=4 x^{3}-16 x$.
i) Show that the quantity $E=\frac{1}{2}\left(\frac{d x}{d t}\right)^{2}-x^{4}+8 x^{2}$ does not change with time.
ii) Given that initial velocity $v_{0}=\sqrt{\frac{31}{8}}$, find the value of E.
iii) Hence, or otherwise, determine the range of the particle with the initial velocity in part (ii).

Question 9 (continued)

(d) An experiment is conducted using the conical filter which is held with its axis vertical as shown. The filter has a radius of 10 cm and semi-vertical angle 30°.

Chemical solution flows from the filter into the cylindrical container, with radius 10 cm , at a constant rate of $3 \mathrm{~cm}^{3} / \mathrm{s}$.

At time t seconds, the amount of solution in the filter has height $h \mathrm{~cm}$ and radius $r \mathrm{~cm}$.

The volume of a cone of radius r and height h is $\frac{1}{3} \pi r^{2} h$ and the curved surface area is $\pi r l$ where l is the slant height of the cone.
i) Find the rate of decrease (to 3 sig. fig.) of the radius of the solution in the filter when $h=5 \mathrm{~cm}$.
ii) Let S denote the curved surface area of the filter in contact with the solution. Show that $\frac{d S}{d t}=-\frac{4 \sqrt{3}}{r} \mathrm{~cm}^{2} / \mathrm{s}$.
iii) When the height of the solution in the cylindrical container measures 0.81 cm , the volume of the solution left in the filter and the container are the same. Find the rate of change with the curved surface area of the filter in contact with the solution with respect to time at this instant.

End of Question 9

Question 10 (19 marks) Use a SEPARATE writing booklet.
(a) Find the exact value of $\sin \left[\tan ^{-1}\left(\frac{3}{2}\right)+\cos ^{-1}\left(\frac{2}{3}\right)\right]$
(b) A hemispherical bowl of radius 10 cm is being filled with water at a constant rate of $20 \mathrm{~cm}^{3}$ per minute.

i) Show that the volume of the water in the bowl in terms of its depth h is

$$
V=\pi\left(10 h^{2}-\frac{h^{3}}{3}\right)
$$

ii) At what rate (to 2 dec.pl.) is the depth of the water rising when it is 5 cm high?
c) Let P_{n} denote the proposition $\sum_{r=1}^{n} r \ln \left(\frac{r+1}{r}\right)=\ln \frac{(n+1)^{n}}{n!}$.

Prove by mathematical induction that this proposition is true for all positive integers, n.

Question 10 (continued)
(d) In the diagram, a vertical pole A, 3 metres high is placed on top of a support 1 metre high. The pole subtends an angle of θ radians at the point P, which is x metres from the base O of the support.

i) Show that $\theta=\tan ^{-1} \frac{4}{x}-\tan ^{-1} \frac{1}{x}$.
ii) Show that θ is maximum when $x=2$.
iii) Deduce that the maximum angle subtended at P is $\theta=\tan ^{-1} \frac{3}{4}$.

BLANK PAGE

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2016
Year 12
Assessment Task 3

Mathematics Extension 1

Suggested Solutions

\&
Markers' Comments

QUESTI ON	Marker
$1-7$	-
8	RB
9	BK
10	AMG

Multiple Choice Answers

1. B
2. C
3. D
4. B
5. C
6. D
7. C
1) What is the domain of the function $f(x)=5 \sin ^{-1}\left(\frac{x}{3}\right)$?
(A) $\quad-\frac{5 \pi}{2} \leq x \leq \frac{5 \pi}{2}$
(B) $-3 \leq x \leq 3$
(C) $-5 \leq x \leq 5$
(D) $\quad-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$
2) Which of the following is the exact value of $\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9-x^{2}}} d x$? $\left.4 . \sin ^{-1} \frac{x}{3}\right] \frac{3}{\sqrt{2}}$
(A) $-\pi$
(B) $\quad-\frac{\pi}{4}$

$$
4\left[\sin ^{-1} 1-\sin ^{-1} \frac{1}{2} \frac{1}{2}\right]
$$

(C) $\frac{\pi}{4}$

$$
\begin{aligned}
4\left[\frac{\pi}{2}-\frac{\pi}{4}\right] & =4\left[\frac{2 \pi-\pi}{4}\right] \\
& =\pi
\end{aligned}
$$

(D) π
3) Given $f(x)=\frac{3}{x}$
(A) $-\frac{13}{4}$
(B) $\frac{13}{4}$
(C) $\frac{3}{8}$
(D) $-\frac{3}{8}$

$$
\begin{array}{rl}
\operatorname{let} y & =\frac{3}{x}-4 \\
50 & x \\
\frac{3}{y} & =\frac{3}{y}-4 \\
\frac{y}{3} & =\frac{1}{x+4} \\
y & =\frac{3}{x+4}
\end{array}
$$

4) The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?
(A) $t=0$
(B) $\quad t=2, t=8$ and $t=14$
(C) $t=5$ and $t=11$
(D) $t=8$.
5) Using the substitution $u=\log _{e} x$, which of the following is equal to $\int_{e}^{e^{2}} \frac{1}{x \log _{e} x} d x$?
(A) $\int_{e}^{e^{2}} \frac{d u}{u}$ $\begin{aligned} u & =\ln x \\ \frac{d u}{d x} & =\frac{1}{x} \\ d u & =\frac{1}{x} \cdot d x\end{aligned}$
(C) $\int_{1}^{2} \frac{d u}{u}$
$\Rightarrow \int \frac{1}{u} \cdot d u$
(D) $\int_{1}^{2} \frac{d u}{e^{u} u}$
now $x=e^{2} \Rightarrow u=\ln e^{2}=2 \ln e=2$

$$
x=e \Rightarrow u=\ln e=1
$$

6) The acceleration of a particle is given by $a=6 x^{2}-4 x-3$, where x is the displacement in cm . The particle initially is at the origin and has a velocity of $3 \mathrm{~cm} / \mathrm{s}$. What is the velocity when the particle is 3 cm from the origin?
(A) $2 \sqrt{7} \mathrm{~cm} / \mathrm{s}$

$$
y=3
$$

(B) $3 \sqrt{7} \mathrm{~cm} / \mathrm{s}$
(C) $\sqrt{41} \mathrm{~cm} / \mathrm{s}$
(D) $\sqrt{57} \mathrm{~cm} / \mathrm{s}$

8 (a) $\int 2 \sin ^{2} x d x-\int x^{2} d x$
very well answered

$$
=2\left(\frac{1}{2} x-\frac{1}{4} \sin 2 x\right)-\frac{x^{3}}{3}+c
$$ by nearly all student

3 unit

$$
2016
$$

but some did
Differentiate ane

$$
\begin{equation*}
=x-\frac{1}{2} \sin 2 x-\frac{x}{3}+c \tag{2}
\end{equation*}
$$ not integrate.

(b) $\frac{d}{d x}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)$

Will answered using, product and 'chain, mule.

$$
\begin{aligned}
& =x \cdot \frac{-1}{\sqrt{1-x^{2}}}+\cos ^{-1} x \times 1-\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \times-2 x \\
& =\frac{-x}{\sqrt{1-x^{2}}}+\cos ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}=\cos ^{-1} x=\text { RUS }
\end{aligned}
$$

$$
\begin{gathered}
y=\sin ^{-1} \frac{x}{2} \\
\sin ^{\tan } y=\frac{x}{2} \\
x=2 \sin y
\end{gathered}
$$

area $O A B C=2 \times \frac{\pi}{2}=\pi$
area dotted part? $\Rightarrow \int_{0}^{\frac{2}{2}} 2 \sin y d y$.

$$
\therefore \int_{0}^{2} \sin ^{-1}\left(\frac{x}{2}\right) d x=\pi-2 \int_{0}^{\frac{\pi}{2}} \sin y d y
$$

reasoncibly answered. Mani students are reluctant. to show full working and process. The question did ask to esyplain!
$8(d) f(x)=1+\frac{2}{x-3} \quad x>3$.
(i) Let $y=1+\frac{2}{x-3}$

$$
\begin{aligned}
& x=1+\frac{2}{y-3} \quad y>3 \\
& \frac{2}{y-3}=\frac{x-1}{1} \\
& \frac{y-3}{2}=\frac{1}{x-1} \\
& y-3=\frac{2}{y-1} \\
& y=f^{-1}(x)=\frac{2}{x-1}+3=\frac{3 x-1}{x-1}
\end{aligned}
$$

(ii) Domain: $x>1$

Range: $y>3$
(1) Badly answered.
(1)

$8(e)$

$$
\begin{aligned}
& \frac{d \theta}{d t}=0.05 \mathrm{rad} / \mathrm{s} \\
& A=\frac{1}{2} \times 6 \times 6 \times \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { hes the } \\
& \text { well answered! } \frac{d A}{d t}=18 \cdot \cos \theta \cdot \frac{d \theta}{d t} \\
& \text { An exact answer }=18 \times \cos \frac{\pi}{6} \times 0.05 \text {. } \\
& \text { wide stat the made } \\
& \text { was looking for } \\
& =18 \times \frac{\sqrt{3}}{2} \times \frac{5}{100} \\
& =0.45 \sqrt{3} \mathrm{~cm} / \mathrm{s} \text {. (ิ) }
\end{aligned}
$$

(f)

$$
\begin{gathered}
a=3 x^{2} \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=3 x^{2}
\end{gathered}
$$

$$
\frac{1}{2} v^{2}=\int 3 x^{2} d x
$$

$$
\frac{1}{2} y^{2}=x^{3}+c_{1}
$$

datar

$$
\left.\begin{array}{l}
\text { datare } \\
y=-\sqrt{2}
\end{array}\right\} \quad \begin{array}{r}
1=1+C_{1} \\
C_{1}=0
\end{array}
$$

$y=1$
$x=0$
$x=0$

$$
\begin{aligned}
& \text { So } t=\frac{\sqrt{2}}{\sqrt{x}}-\sqrt{2} \\
& (t+\sqrt{2})=\frac{\sqrt{2}}{\sqrt{x}} \\
& \sqrt{x}=\frac{\sqrt{2}}{(t+\sqrt{2})}
\end{aligned}
$$

$$
1=1+C_{i}
$$

$$
C_{1}=0
$$

$$
x=\frac{2}{(t+\sqrt{2})^{2}}
$$

$$
V=x
$$

$$
v^{2}=2 x^{3}
$$

(1) Us, there,

$$
\begin{align*}
& V=-\sqrt{2 x^{3}} \tag{i}\\
& \frac{d x}{d t}=-\sqrt{2 x^{3}} \\
& \frac{d t}{d x}=-\frac{1}{\sqrt{2 x^{3}}}=-\frac{1}{\sqrt{2}} \cdot x^{-\frac{3}{2}} \\
& t=\int-\frac{1}{\sqrt{2}} \cdot x^{-\frac{3}{2}} \cdot d x \\
& t=-\frac{1}{\sqrt{2}} \cdot \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}}+C_{2} \\
& t=\frac{2}{\sqrt{2} \sqrt{x}}+C_{2} \\
& t=\frac{\sqrt{2}}{\sqrt{x}}+C_{2}
\end{align*}
$$

$d \sqrt{\sqrt{a}} x$
$x_{y=1} \quad D=\frac{\sqrt{2}}{1}+C_{2} \Rightarrow C_{2}=-\sqrt{2}$

Year Ia m xi
QQ
(a) (i)

$$
\begin{aligned}
R H S & =u^{2}-u+1-\frac{1}{u+1} \\
& =\frac{u^{2}(u+1)-u(u+1)+u+1-1}{u+1} \\
& =\frac{u^{3}+u^{2}-u^{2}-n+n+1-1}{\mu+1} \\
& =\frac{u^{3}}{\mu+1}=L H S
\end{aligned}
$$

(ii) $\operatorname{sow} \int_{0}^{4} \frac{x}{1+\sqrt{x}} d x=\frac{16}{3}-\ln 9$

$\begin{aligned} & \text { When } x=0, u=0 \\ & x=4, \mu=2\end{aligned}$

$$
\begin{aligned}
I & =\int_{0}^{2} \frac{u^{2}}{1+\mu} \times-2 \sqrt{x} d n \\
& =2 \int_{0}^{2} \frac{u^{2}}{1+\mu} \times u d u-2 \int_{0}^{2} \frac{u^{3}}{1+u} d u \\
& =2 \int_{0}^{2}\left(\mu^{2}-\mu+1-\frac{1}{1+1}\right) d u \text { for } 1 \pi \\
& =2\left[\frac{\mu^{3}}{3}-\frac{u^{2}}{2}+\mu-\ln (u+1)\right]_{0}^{2} \\
& \left.=2\left[\frac{\pi}{3}-\frac{4}{2}+2-\ln 3\right)-(0-0+0-\ln 1)\right] \\
I & =\frac{16}{3}-\ln 9
\end{aligned}
$$

Part (i) was done well. Part (ii) was generally done well but many stud cents did not know what to do with the square root of x in the integrand.
$9(b)$

$$
\begin{aligned}
& (i) \frac{d(\cos \theta)}{d \theta \theta}=-\sin \theta \\
& y=\sec \theta=\frac{1}{\cos ^{2} \theta}=(\cos \theta)^{-1} \\
& y^{\prime}=-1(\cos \theta)^{-2}(-\sin \theta) \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} . \\
& y^{\prime}=\tan \theta \sec \theta
\end{aligned}
$$

(ii) $x=\sec \theta-1$

$$
\begin{aligned}
& I=\int_{\sqrt{2}-1}^{1} \frac{d x}{(x+1) \sqrt{x^{2}+2 x}} \\
& \text { Let } x=\sec \theta-1 \\
& d x=\tan \theta \sec \theta d \theta \\
& \Rightarrow x+1=\sec \theta \\
& \text { and } x(x+2)=(\sec \theta-1)(\sec \theta+1) \\
& =\sec ^{2} \theta-1 \\
& =\tan ^{2} \theta \\
& \text { When } x=1, \sec \theta=2 \\
& \Rightarrow \cos \theta=\frac{1}{2} \\
& \begin{aligned}
& \\
& W_{\text {en }} x=\sqrt{2}-1, \sec \theta=\sqrt{2}
\end{aligned} \\
& \cos \theta=\frac{\sqrt{2}}{\sqrt{2}} \\
& \text { Then } I=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\theta=\frac{\pi}{4}}{\tan \theta \operatorname{tec} \theta d \theta} \tan \theta=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \operatorname{dar} \\
& \begin{array}{l}
=\frac{\pi}{3}-\frac{\pi}{4} \\
=1
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& \text { q(c) }(i) \ddot{x}=4 x^{3}-16 x \quad\left(\text { when } x=0, t=0, v=v_{0}\right) \\
& \Rightarrow \frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=4 x^{3}-16 x \\
& \text { negate } \Rightarrow \frac{1}{2} v^{2}=x^{4}-8 x^{2}+c \\
& v^{2}=2 x^{4}-16 x^{2}+c \\
& \text { When } x=0, v=v_{0} \Rightarrow v_{0}^{2}=c \\
& \quad v^{2}=2 x^{4}-16 x^{2}+v_{0}^{2} \quad \text { (1) } \tag{1}
\end{align*}
$$

Sub (1) in E where $E=\frac{1}{2}\left(\frac{d x}{d t}\right)^{2}-x^{4}+8 x^{2}$

$$
\begin{aligned}
\Rightarrow E & =\frac{1}{2}\left(2 x^{4}-16 x^{2}+v_{0}^{2}\right) /-x^{4}+8 x^{2} \\
E & =\frac{1}{2} v_{0}^{2}
\end{aligned}
$$

$\therefore E$ is a constant and not dependent
(u) $\quad v_{0}=\sqrt{\frac{3 \Gamma}{8}}$

Then $E=\frac{1}{2} \times \frac{31}{8}=\frac{31}{16}$ (initial value of E)

In (i) many students forgot about the co
In (ii) a common error was to let $\mathrm{E}=\mathrm{V} 0$.
In (iii) most who got the quadratic equation did not check the solutions. Half a mark was given for knowing that $\mathrm{v}=0$.
q(iii) Range of portcice. Particle traces along X-axis \therefore reed range of x values.

$$
V^{2}=2 x^{4}-16 x^{2}+\frac{31}{8}
$$

Partule changes direction when $v=0$.
Also, if $\dot{x}<0$, particle is moving to left at if $\ddot{x}>0$, particle is at this point

$$
\text { Set } \begin{aligned}
v=0 & \Rightarrow 2 x^{4}-16 x^{2}+\frac{31}{8}=0 \\
x^{2} & =\frac{16 \pm \sqrt{256-8 \times \frac{31}{8}}}{4} \\
& =\frac{16 \pm 15}{4} \\
x^{2} & =\frac{31}{4} \text { or } \frac{1}{4}
\end{aligned}
$$

$\Rightarrow x= \pm \frac{4}{2}$ or $\pm \frac{1}{2}$. Check thee point Particle start at zero with positive v

$x=\frac{1}{2}, x=\frac{1}{2}-8<0 \Rightarrow$ particle moving to $x=-\frac{1}{2}, \quad \dot{x}=-\frac{1}{2} \pm 8>0 \Rightarrow$ partide moving to rig \therefore particle moves between $-\frac{1}{2}$ and $\frac{1}{2}$
ie $\quad-\frac{1}{2} \leqslant x \leqslant \frac{1}{2}$

9 (d)
(i) $\frac{d V}{d t}=-3 \mathrm{~cm}^{3} / \mathrm{s}$
$\frac{d r}{d t}=$? when $h=5$

h 100

$$
\begin{gathered}
\sin 30=\frac{r}{t}=\frac{1}{2} \\
\Rightarrow l=2 r(2)
\end{gathered}
$$

$$
\sin b(2) \operatorname{in}(1) \Rightarrow h=\sqrt{4 r^{2}-r^{2}}
$$

$$
h=r \sqrt{3}
$$

Now $V=\frac{1}{3} \pi r^{2} h$ (cone)

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{-2}(r \sqrt{3}) \\
V & =\frac{\pi}{\sqrt{3}} r^{-3} \\
\frac{d V}{d r} & =\sqrt{3} \pi r^{2}
\end{aligned}
$$

Q 9 (d)
(i) (cont) Then $\frac{d V}{d r}=\frac{d V}{d t} \frac{d t}{d r}$

$$
\begin{aligned}
& \sqrt{3} \pi r^{2}=3 \times \frac{d t}{d r} \\
& \frac{d t}{d r}=\frac{\pi r^{2}}{\sqrt{3}} \\
\Rightarrow & \frac{d r}{d t}=\frac{\sqrt{3}}{\pi r^{2}}
\end{aligned}
$$

When $h=5, T=\frac{5}{\sqrt{3}}$

$$
\begin{aligned}
\Rightarrow \frac{d r}{d t} & =\frac{\sqrt{3}}{\pi x^{25}} \\
& =\frac{-3 \sqrt{3}}{25 \pi} \mathrm{~cm} / \mathrm{s} .
\end{aligned}
$$

d) (ii)

$$
\text { ii) } \left.\begin{array}{rl}
S & =\pi r l \\
& =\pi r(2 r) \\
& =2 \pi r^{2}
\end{array}\right)=\frac{0.006}{t_{0} 3 s f}
$$

9. (ii) When $h=0.81 \mathrm{~cm}, \quad V_{\text {filter }}=V_{\text {cylinder }}$

$$
\begin{aligned}
\Rightarrow \frac{\pi}{\sqrt{3}} r^{3} & =\pi\left(10^{2}\right) h \\
& =\pi \times 100 \times 0.81 \\
\frac{\pi}{\sqrt{3}} r^{3} & =81 \pi
\end{aligned}
$$

$$
\Rightarrow r^{3}=8 / \sqrt{3}=3^{\frac{9}{2}}
$$

$$
\frac{d s}{d t} \text { ? when } h=0.81
$$

$$
\Rightarrow r=\left(3^{9 / 2}\right)^{\frac{1}{3}} d
$$

$$
r=3^{3 / 2}=3 \sqrt{3}
$$

$$
\frac{d s}{d t}=\frac{-4 \sqrt{3}}{r}
$$

$$
=-4 \sqrt{3} \times \frac{1}{3 \sqrt{3}}
$$

$$
=-\frac{-4}{3} \mathrm{~cm}^{2} / \mathrm{s}
$$

The most commonerror in (d) was that students were trying to differentiate a formula with respect to two variables. The other common mistake was to substitute in $\mathrm{h}-=5$ at the start of the problem.

SHS Maths Ext 1 Task 32016

Question 10

(a) $\quad E=\sin \left[\tan ^{-1}\left(\frac{3}{2}\right)+\cos ^{-1}\left(\frac{2}{3}\right)\right]$

Let $\theta=\tan ^{-1}\left(\frac{3}{2}\right)$ and $\varphi=\cos ^{-1}\left(\frac{2}{3}\right)$

$$
\begin{aligned}
E & =\sin \theta \cos \varphi+\cos \theta \sin \varphi \\
& =\frac{3}{\sqrt{13}} \cdot \frac{2}{3}+\frac{2}{\sqrt{13}} \cdot \frac{\sqrt{5}}{3} \\
& =\frac{6+2 \sqrt{5}}{3 \sqrt{13}}
\end{aligned}
$$

[This part was generally well-answered. Some unnecessarily rationalized the denominator.]
(b) (i) The volume will be found by rotation of a circular arc about the y-axis. The equation of the circle is

$$
\begin{aligned}
& x^{2}+(y-10)^{2}=100 \\
& x^{2}=100-(y-10)^{2} \\
& x^{2}=20 y-y^{2} \\
& \text { Thus } \\
& V=\pi \int_{0}^{h}\left(20 y-y^{2}\right) d y \\
& =\pi\left[10 y^{2}-\frac{y^{3}}{3}\right]_{0}^{h} \\
& =\pi\left(10 h^{2}-\frac{h^{3}}{3}\right)
\end{aligned}
$$

[Those who realised that integration was required, generally answered well. The others scored poorly.]
(ii) By the Chain Rule $\frac{d h}{d t}=\frac{d h}{d V} \frac{d V}{d t}$

$$
\begin{aligned}
\text { Now } \left.\quad \begin{array}{rl}
\frac{d V}{d t} & =20 \mathrm{~cm}^{3} / \mathrm{min} \\
\frac{d V}{d h} & =\pi\left(20 h-h^{2}\right) \\
\frac{d h}{d V} & =\frac{1}{\pi\left(20 h-h^{2}\right)} \\
\text { Thus at } h=5 \quad \begin{array}{rl}
\frac{d h}{d t} & =\frac{1}{\pi\left(20 \times 5-5^{2}\right)} \times 20 \\
& =\frac{20}{75 \pi} \\
& \approx 0.08 \mathrm{~cm} / \mathrm{min}
\end{array}
\end{array} . \begin{array}{l}
\\
\end{array}\right]
\end{aligned}
$$

[This was well-answered, even by those who failed in part (i). Many failed to give the approximate answer, but were not penalised.]
(c) $\quad P_{n}: \sum_{r=1}^{n} r \ln \left(\frac{r+1}{r}\right)=\ln \left(\frac{(n+1)^{n}}{n!}\right)$

$$
\begin{aligned}
P_{1}: L H S & =1 \cdot \ln \left(\frac{2}{1}\right) \quad R H S
\end{aligned}=\ln \left(\frac{2^{1}}{1!}\right)
$$

P_{k} : Assume the proposition is true for $n=k, k \in J^{+}, 1 \leq k \leq n$
That is $\quad \sum_{r=1}^{k} r \ln \left(\frac{r+1}{r}\right)=\ln \left(\frac{(k+1)^{k}}{k!}\right)$
P_{k+1} : Required to prove $P_{k} \rightarrow P_{k+1}$, that is

$$
\begin{aligned}
& \sum_{r=1}^{k+1} r \ln \left(\frac{r+1}{r}\right)=\ln \left(\frac{(k+2)^{k+1}}{(k+1)!}\right) \\
\text { LHS } & =\sum_{r=1}^{k} r \ln \left(\frac{r+1}{r}\right)+(k+1) \ln \left(\frac{(k+2)}{k+1}\right) \\
= & \ln \left(\frac{(k+1)^{k}}{k!}\right)+(k+1) \ln \left(\frac{(k+2)}{k+1}\right) \text { by our assumption } \\
= & \ln \left(\frac{(k+1)^{k}}{k!}\right)+\ln \left(\frac{(k+2)}{k+1}\right)^{k+1} \text { (properties of logs) }
\end{aligned}
$$

$$
\begin{aligned}
& =\ln \left(\frac{(k+1)^{k}}{k!} \times \frac{(k+2)^{k+1}}{(k+1)^{k+1}}\right) \\
& =\ln \left(\frac{(k+2)^{k+1}}{(k+1)!}\right) \\
& =\text { RHS as required }
\end{aligned}
$$

Hence by the Principle of Mathematical Induction, P_{n} is true for positive integral n.
[Many failed to show that $P_{k} \rightarrow P_{k+1}$, simply leaving out the steps they could not fathom.]
(d) (i) Clearly $\theta=\angle O P B-\angle O P A$

$$
=\tan ^{-1}\left(\frac{4}{x}\right)-\tan ^{-1}\left(\frac{1}{x}\right)
$$

[Most were successful in this part.]
(ii) $\frac{d \theta}{d x}=\frac{1}{1+\left(\frac{4}{x}\right)^{2}} \times\left(-4 x^{-2}\right)-\frac{1}{1+\left(\frac{1}{x}\right)^{2}} \times\left(-x^{-2}\right)$

$$
=\frac{-4}{x^{2}+16}+\frac{1}{x^{2}+1}
$$

$$
=\frac{12-3 x^{2}}{\left(x^{2}+16\right)\left(x^{2}+1\right)}
$$

Stationary points when $12-3 x^{2}=0$

$$
x= \pm 2
$$

When $x=2$:

x	1	2	3
θ^{\prime}	$\frac{9}{34}$	0	$\frac{-15}{250}$
	rising	stat	falling

Thus θ is a maximum when $x=2$.
[Most candidates were able to handle the rather algebraically challenging derivative. Quite a few failed to determine the nature of the turning point. Some who did lost marks for not using numbers in the derivative row of the table above.]
(iii) Maximum angle is $\theta=\tan ^{-1} 2-\tan ^{-1} \frac{1}{2}$.

$$
\text { Now } \begin{aligned}
& \tan \theta=\frac{2-\frac{1}{2}}{1+2 \times \frac{1}{2}} \\
&=\frac{3}{4} \\
& \therefore \theta=\tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

[This last part was well-answered by those (most) who attempted it.]

