SYDNEY GRAMMAR SCHOOL

2013 Assessment Examination

FORM VI MATHEMATICS EXTENSION 1

Monday 20th May 2013

General Instructions

- Writing time 1 hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

${ m Total}-55~{ m Marks}$

• All questions may be attempted.

Section I – 7 Marks

- Questions 1–7 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 48 Marks

- Questions 8–11 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eight.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Candidature 113 boys

Examiner BR/DNW

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

When $2x^3 + x^2 + kx - 4$ is divided by (x - 1) the remainder is 2. The value of k is:

- (A) -7
- (B) 7
- (C) 1
- (D) 3

QUESTION TWO

The velocity v of a certain object is related to the displacement x by $v^2 = (x - 3)^2$. Its acceleration is:

> (A) x - 3(B) 2(x - 3)(C) $\frac{1}{6}(x - 3)^3$ (D) $\frac{1}{3}(x - 3)^3$

QUESTION THREE

A particle starts at rest 3 m to the right of the origin and moves in simple harmonic motion along the *x*-axis with period 2 s. The equation of motion is:

(A) $x = 3 \sin 2t$ (B) $x = 3 \cos 2t$ (C) $x = 3 \sin \pi t$ (D) $x = 3 \cos \pi t$

QUESTION FOUR

The equation $x^3 - 2x^2 - x + 1 = 0$ has roots α , β and γ . Which of the following is true?

- (A) $\alpha + \beta + \gamma = -2$ and $\alpha \beta \gamma = -1$
- (B) $\alpha + \beta + \gamma = -2$ and $\alpha \beta \gamma = 1$
- (C) $\alpha + \beta + \gamma = 2$ and $\alpha \beta \gamma = -1$
- (D) $\alpha + \beta + \gamma = 2$ and $\alpha \beta \gamma = 1$

1

1

1

SGS Assessment 2013 Form VI Mathematics Extension 1 Page 3

QUESTION FIVE

The exact value of $\tan\left(\cos^{-1}\left(-\frac{2}{3}\right)\right)$ is:

(A)
$$\frac{\sqrt{5}}{2}$$

(B) $-\frac{\sqrt{5}}{2}$
(C) $\frac{2}{\sqrt{5}}$
(D) $-\frac{2}{\sqrt{5}}$

QUESTION SIX

The double angle formulae can be used to show that $x = 3 - 4\sin^2 t$ is an example of **1** simple harmonic motion. The centre of motion is:

(A) x = 1(B) x = 2(C) x = 3(D) x = 5

QUESTION SEVEN

A steel ball is fired at an initial speed of 12 m/s at an angle of elevation of 30° under the influence of gravity alone. The speed of the ball at its maximum height is:

- (A) $0 \,\mathrm{m/s}$
- (B) $6 \,\mathrm{m/s}$
- (C) $6\sqrt{3}$ m/s
- (D) $12 \,\mathrm{m/s}$

End of Section I

Exam continues overleaf ...

1

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION EIGHT (12 marks) Use a separate writing booklet. Marks

(a) Use the factor theorem to show that (x+1) is a factor of $P(x) = 6x^3 + 5x^2 - 2x - 1$.

(b) Let $f(x) = 4 \sin^{-1} 2x$. What is the domain of f(x)?

(c) Differentiate
$$y = \tan^{-1}(3x)$$
.

- (d) The equation $x^3 + 2x^2 1 = 0$ has roots α , β and γ .
 - (i) Write down the values of $\alpha\beta\gamma$ and $\alpha\beta + \alpha\gamma + \beta\gamma$. **1**
 - (ii) Evaluate $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

(e) Evaluate
$$\int_0^{\sqrt{3}} x\sqrt{x^2+1} \, dx$$
 by using the substitution $u = x^2+1$.

(f) Let
$$\frac{3x^3 - x^2 + 2x + 1}{x^2 - 1} = P(x) + \frac{R(x)}{x^2 - 1}$$
.

Determine the polynomials P(x) and R(x) by long division.

QUESTION NINE (12 marks) Use a separate writing booklet.

(a) The polynomial P(x) has degree 3 and the zeroes are -1, 1 and 2. The graph of y = P(x) passes through the point (3, 16). Find P(x) in factored form.

The graph above shows the velocity-time graph of an object initially at the origin.

- (i) When is the object stationary?
- (ii) During what period is the acceleration positive?
- (iii) At what time does the object return to the origin?
- (iv) At what time is it furthest from the origin?

Marks

3

3

1

 $\mathbf{2}$

QUESTION NINE (Continued)

- (c) A tennis player serves a ball from a height of $1.8 \,\mathrm{m}$. The ball initially travels horizontally with a velocity of $35 \,\mathrm{m/s}$. Neglect air resistance and assume that the acceleration due to gravity is 10 m/s^2 . Let x metres be the horizontal distance the ball has travelled and let y metres be its height at times t seconds.
 - (i) Show by integration that the equations of motion of the ball are

x = 35t and $y = 1.8 - 5t^2$.

- (ii) Find how long it takes for the ball to hit the ground.
- (iii) What is the horizontal distance travelled in that time?
- (iv) By how much does the ball clear the net which is 0.95 m high and 14 m from the player? (Ignore the dimensions of the ball.)

QUESTION TEN (12 marks) Use a separate writing booklet.

(a) The polynomial P(x) is monic and has degree 3. It has a quadratic factor $(x^2 - 1)$. 3 When P(x) is divided by (x-2) the remainder is -9.

Find P(x) and hence solve the equation P(x) = 0.

(b) A car accelerates away from the origin so that its position x metres at time t seconds is given by

 $x = 20(t + e^{-0 \cdot 25t}).$

- (i) Find the velocity v and acceleration \ddot{x} as functions of t.
- (ii) What is the eventual speed of the car?
- (iii) Sketch the velocity-time graph.
- (c) A particle is moving about the origin according to the rule

 $x = 4\sin(3t + \frac{\pi}{4}),$

where x is the displacement in centimetres from the origin at time t seconds.

- (i) Show that this is simple harmonic motion by showing that $\ddot{x} = -n^2 x$ for some $\mathbf{2}$ value of n, and state the value of n.
- (ii) Write down the amplitude and period of the motion.
- (iii) Determine when the particle is at x = 2 for the first time.

1 1 $\mathbf{2}$

 $\mathbf{2}$

rks	

Ma

6		1	

QUESTION ELEVEN (12 marks) Use a separate writing booklet.

- (a) The roots of the equation $3x^3 19x^2 + 38x 24 = 0$ form a geometric sequence. Solve 4 the equation.
- (b) The equations of motion of a projectile fired at speed V and angle of elevation θ are:

$$x = Vt\cos\theta$$
$$y = Vt\sin\theta - \frac{1}{2}gt^{2}$$

where x is the horizontal distance in metres, y is the height in metres, and t is the time in seconds.

(i) Find the time of flight.

(ii) Hence show that the range is
$$\frac{V^2 \sin 2\theta}{g}$$
 metres.

(c)

In a game of cricket, a fielder at A on the boundary throws a cricket ball at speed V and angle of elevation α to another fielder at B. The fielder at B instantly relays the throw at the same speed, but at an angle of elevation β , to a wicket-keeper at C. The three points A, B and C are collinear. The situation is shown in the diagram above.

Use your answers to part (b) to help answer the following.

- (i) Write down an expression for the total time taken for the ball to arrive at C.
- (ii) Write down an expression for the total distance AC.
- (iii) The fielder at A throws another cricket ball at the same speed V and at an angle of elevation γ directly to the wicket-keeper at C. In the following you may assume that all three angles α , β and γ are less than 45° and greater than 0°.
 - (α) Explain why $\gamma > \alpha$ and $\gamma > \beta$.
 - (β) Show that $\sin 2\gamma = \sin 2\alpha + \sin 2\beta$.
 - (γ) Show that it takes longer to throw the ball directly to the wicket-keeper than to relay it via B.

End of Section II

END OF EXAMINATION

1	
1	ĺ

1	
1	
2	

Marks

1

SGS Assessment 2013 Form VI Mathematics Extension 1 Page 7

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x, x > 0$$

SYDNEY GRAMMAR SCHOOL

2013 Assessment Examination FORM VI MATHEMATICS EXTENSION 1 Monday 20th May 2013

•	Record your multiple choice answers
	by filling in the circle corresponding
	to your choice for each question.

- Fill in the circle completely.
- Each question has only one correct answer.

One		
В ()	С ()	D ()
Γwo		
В ()	С ()	D ()
Three		
В ()	С ()	D ()
Four		
В ()	С ()	D ()
Five		
В ()	С ()	D ()
Six		
В ()	С ()	D ()
Seven		
В ()	С ()	D ()
	B ○ Fwo B ○ Fhree B ○ Four B ○ Five B ○ Six B ○ Seven	B ○ C ○ Fwo B ○ C ○ Fhree B ○ C ○ Four B ○ C ○ Five B ○ C ○ Six B ○ C ○

CANDIDATE NUMBER:

Multiple Choice (with possible source of errors)

Q 1 (D) (A) P(-1) = 2, (B) P(-1) = 2 sign error, (C) k - 1 = 2, then k = 1 **Q 2** (A) (B) $\frac{d}{dx}v^2$, (C) $\int \frac{1}{2}v^2 dx$, (D) $\int v^2 dx$ **Q 3** (D) (A) x(0) = 0, n = T, (B) n = T, (D) x(0) = 0 **Q 4** (C) (A) $\frac{b}{a}, -\frac{d}{a}$, (B) $\frac{b}{a}, \frac{d}{a}$, (D) $-\frac{b}{a}, \frac{d}{a}$ **Q 5** (B) (A) wrong quadrant, (C) reciprocal, wrong quadrant, (D) reciprocal **Q 6** (A) (B) amplitude, (C) misread: $3 - 4\sin t$, (D) add amplitude to 3 **Q 7** (C) (A) \dot{y} , (B) $\dot{y}(0)$, (D) initial speed

QUESTION EIGHT (12 marks)

(a)
$$P(-1) = -6 + 5 + 2 - 1$$

= 0 so $(x + 1)$ is a factor

(b)
$$-1 \le 2x \le 1$$

so
$$-\frac{1}{2} \le x \le \frac{1}{2}$$

(c)
$$y = \tan^{-1} 3x$$

so $y' = \frac{3}{1+9x^2}$
[(1) for derivative of \tan^{-1} and (1) for chain rule.]

(d) (i)
$$\alpha\beta\gamma = 1$$

 $\alpha\beta + \alpha\gamma + \beta\gamma = 0$

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \alpha\gamma + \beta\gamma}{\alpha\beta\gamma}$$

= 0

 $\sqrt{}$

 \checkmark

 $\sqrt{\sqrt{}}$

 $\sqrt{}$

SGS Assessment 2013 Solutions Form VI Mathematics Extension 1 Page 2

(e)
$$I = \int_{0}^{\sqrt{3}} x \sqrt{x^{2} + 1} dx$$

Let $u = x^{2} + 1$
at $x = 0, \quad u = 1$
 $x = \sqrt{3} \quad u = 4$
and $\frac{1}{2} du = x dx$,
so $I = \int_{1}^{4} \frac{1}{2} \sqrt{u} du$
 $= \frac{1}{3} \left[u^{3/2} \right]_{1}^{4}$
 $= \frac{7}{3}$

(f)

$$x^{2} - 1 \left| \begin{array}{c} \frac{3x - 1}{3x^{3} - x^{2} + 2x + 1} \\ \frac{3x^{3} - 3x}{-x^{2} + 5x + 1} \\ \frac{-x^{2} + 5x + 1}{5x} \\ 5x \\ \text{so } P(x) = 3x - 1 \text{ and } R(x) = 5x \end{array} \right| \overrightarrow{\checkmark}$$

Total for Question 8: 12 Marks

 $\sqrt{}$

 $\sqrt{}$

QUESTION NINE (12 marks)P(x) = a(x+1)(x-1)(x-2) \checkmark (a) Let (3, 16) is on y = P(x) so $16 = a \times 4 \times 2 \times 1$ thus a = 2P(x) = 2(x+1)(x-1)(x-2) $\sqrt{}$ and $\sqrt{}$ t = 0, 2, 10(b) (i) $\sqrt{}$ 1 < t < 2 or 2 < t < 6(ii) [Accept 1 < t < 6 or similar.] $\sqrt{}$ (iii) By equal areas, t = 4 $\sqrt{}$ (iv)t = 10

 $\ddot{x} = 0$ $\ddot{y} = -10$ (c) (i) $\dot{x} = C_1$ $\dot{y} = C_3 - 10t$ \mathbf{SO} \mathbf{SO} At t = 0, $0 = C_3 - 0$ At t = 0, $35 = C_1$ $\dot{x} = 35$ $\dot{y} = -10t$ \mathbf{SO} \mathbf{SO} $x = 35t + C_2$ thus $y = C_4 - 5t^2$ thus At t = 0, $1 \cdot 8 = C_2 - 0$ At t = 0, $0 = 0 + C_2$ $y = 1 \cdot 8 - 5t^2$ \checkmark \checkmark x = 35t \mathbf{SO} \mathbf{SO} (ii) At y = 0 $5t^2 = \frac{9}{5}$ $t = \frac{3}{5} \qquad (t > 0)$ $\sqrt{}$ \mathbf{SO} (iii) At $t = \frac{3}{5}$ x = 21 $\sqrt{}$ (iv) At x = 1435t = 14 $t = \frac{2}{5}$ $\sqrt{}$ \mathbf{SO} $y(\frac{2}{5}) = \frac{9}{5} - 5 \times (\frac{2}{5})^2$ Now = 1 $\sqrt{}$

Thus the ball clears the net by $0.05 \,\mathrm{m}$

QUESTION TEN (12 marks)

(a) Let	$P(x) = (x^2 - 1)(x - \alpha)$	\checkmark
Now	P(2) = -9	
so	$3(2-\alpha) = -3$	
thus	$\alpha = 5$	
henc	e $P(x) = (x+1)(x-1)(x-5)$.	
Thus	P(x) = 0 has solutions $x = -1, 1, 5$.	\checkmark

(b) (i) $v = 20(1 - \frac{1}{4}e^{-0.25t})$ $= 5(4 - e^{-0 \cdot 25t}) \,\mathrm{m}\,\mathrm{s}^{-1}$ $\ddot{x} = \frac{5}{4}e^{-0.25t}\,\mathrm{m\,s}^{-2}$

(ii)
$$\lim_{t \to \infty} v = \lim_{t \to \infty} 5(4 - e^{-t/4})$$
$$= 5(4 - 0)$$
$$= 20 \,\mathrm{m \, s^{-1}}$$

 $\sqrt{}$

(c) (i)
$$x = 4\sin(3t + \frac{\pi}{4})$$
$$\dot{x} = 12\cos(3t + \frac{\pi}{4})$$
$$\ddot{x} = -36\sin(3t + \frac{\pi}{4})$$
$$= -9x$$
with $n = 3$

(ii) amplitude = 4
period =
$$\frac{2\pi}{3}$$

(iii) At
$$x = 2$$
, $\sin(3t + \frac{\pi}{4}) = \frac{1}{2}$
so $3t + \frac{\pi}{4} = \frac{\pi}{6}, \frac{5\pi}{6}, \dots$
thus $t = -\frac{\pi}{36}, \frac{7\pi}{36}, \dots$
Hence the first positive solution is $t = \frac{7\pi}{36}$

Total for Question 10: 12 Marks

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

QUESTION ELEVEN (12 marks)

(a) Let the roots be $\frac{a}{r}$, a and ar, then:

 $\frac{a}{r} \times a \times ar = \frac{24}{3}$ (product of roots) so a = 2and $\frac{a}{r} + a + ar = \frac{19}{3}$ (sum of roots) or $6r^2 - 13 + 6 = 0$ thus (3r - 2)(2r - 3) = 0so $r = \frac{2}{3}$ or $\frac{3}{2}$ In both cases the roots are $\frac{4}{3}, 2, 3$

(b) (i) At
$$y = 0$$
 $t(V\sin\theta - \frac{1}{2}gt) = 0$
so $t = \frac{2V\sin\theta}{g}$ $(t \neq 0)$

SGS Assessment 2013 Solutions Form VI Mathematics Extension 1 Page 5

(ii) From (i)
$$x = V \times \frac{2V \sin \theta}{g} \times \cos \theta$$
$$= \frac{V^2 \times 2 \sin \theta \cos \theta}{g}$$
$$= \frac{V^2 \sin 2\theta}{g}.$$

(c) (i) Time
$$AC = \frac{2V \sin \alpha}{g} + \frac{2V \sin \beta}{g}$$

 $= \frac{2V}{g}(\sin \alpha + \sin \beta)$
(ii) Range $AC = \frac{V^2 \sin 2\alpha}{g} + \frac{V^2 \sin 2\beta}{g}$
 $= \frac{V^2}{g}(\sin 2\alpha + \sin 2\beta)$
(iii) (α) Since range AC > range AB
 $\sin 2\gamma > \sin 2\alpha$
so $\gamma > \alpha$ (since 2γ and 2α are acute)
and likewise, $\gamma > \beta$.
[Accept any other valid argument.]
(β) From the range of AC
 $\frac{V^2}{g} \sin 2\gamma = \frac{V^2}{g}(\sin 2\alpha + \sin 2\beta)$
or $\sin 2\gamma = \sin 2\alpha + \sin 2\beta$
(γ) $\sin 2\gamma = \sin 2\alpha + \sin 2\beta$
(γ) $\sin 2\gamma = \sin 2\alpha + \sin 2\beta$
 $\sin 2\gamma = \beta \cos \alpha < \cos \alpha$ (cos is decreasing for acute angles)
and $\gamma > \beta$ so $\cos \gamma < \cos \beta$ (again, cos is decreasing for acute angles)
thus $2 \sin \gamma \cos \gamma > 2 \sin \alpha \cos \gamma + 2 \sin \beta \cos \gamma$
hence $\sin \gamma > \sin \alpha + \sin \beta$
thus $\frac{2V}{g} \sin \alpha > \frac{2V}{g}(\sin \alpha + \sin \beta)$
That is, the direct throw takes longer than the relayed throw.

Total for Question 11: 12 Marks

Out of interest, here is another solution to the last part.

Let AB = a and BC = b then the time for the relayed throw is

$$t_1 = \frac{a}{V\cos\alpha} + \frac{b}{V\cos\beta}$$
$$= \frac{a\cos\beta + b\cos\alpha}{V\cos\alpha\cos\beta}$$

and the time for the direct throw is

Now

But

$$t_{2} = \frac{a+b}{V\cos\gamma}.$$

$$t_{2} - t_{1} = \frac{a+b}{V\cos\gamma} - \frac{a\cos\beta + b\cos\alpha}{V\cos\alpha\cos\beta}$$

$$= \frac{(a+b)\cos\alpha\cos\beta - a\cos\beta\cos\gamma - b\cos\alpha\cos\gamma}{V\cos\alpha\cos\beta\cos\gamma}$$

$$= \frac{a\cos\beta(\cos\alpha - \cos\gamma) + b\cos\alpha(\cos\beta - \cos\gamma)}{V\cos\alpha\cos\beta\cos\gamma}.$$

$$\gamma > \alpha \text{ and } \gamma > \beta$$

$$\cos\alpha - \cos\gamma > 0 \text{ and } \cos\beta - \cos\gamma > 0$$

 \mathbf{SO}

 $t_2 - t_1 > 0$, Hence

that is, the direct throw is slower than the relayed throw.

BR/DNW