FORM VI

MATHEMATICS EXTENSION 1

Monday 19th May 2014

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 55 Marks

- All questions may be attempted.

Section I-7 Marks

- Questions 1-7 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 48 Marks

- Questions 8-11 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eight.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 123 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The exact value of $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \cos ^{-1}\left(\frac{1}{2}\right)$ in radians is:
(A) 0.822
(B) 2700
(C) $\frac{\pi^{2}}{12}$
(D) $\frac{\pi^{2}}{24}$

QUESTION TWO

If $x+\alpha$ is a factor of $7 x^{3}+9 x^{2}-5 \alpha x$, where $\alpha \neq 0$, then the value of α is:
(A) 2
(B) $\frac{4}{7}$
(C) $-\frac{4}{7}$
(D) -2

QUESTION THREE

A particle is moving in a straight line in such a way that its displacement, x metres, at time t seconds is given by $x=2 \cdot 5 t+5 \cos (0 \cdot 5 t)$, where $t \geq 0$.

The minimum velocity of the particle, in metres per second, is:
(A) -5
(B) $-2 \cdot 5$
(C) 0
(D) $2 \cdot 5$

QUESTION FOUR

If $f^{\prime}(x)=\cos x$ and $f\left(\frac{\pi}{2}\right)=0$, then $f(x)$ is equal to:
(A) $\sin x$
(B) $1-\sin x$
(C) $\sin x-1$
(D) $\sin x+1$

QUESTION FIVE

Which one of the following is not equal to $\tan \left(\frac{\pi}{5}\right)$?
(A) $\frac{1}{\cot \left(\frac{\pi}{5}\right)}$
(B) $\cot \left(\frac{3 \pi}{10}\right)$
(C) $\frac{2 \tan \left(\frac{\pi}{10}\right)}{1-\tan ^{2}\left(\frac{\pi}{10}\right)}$
(D) $\frac{2 \tan \left(\frac{2 \pi}{5}\right)}{1-\tan ^{2}\left(\frac{2 \pi}{5}\right)}$

QUESTION SIX

The velocity v of a particle as a function of its displacement x is given by $v=\frac{2}{\sqrt{1-x^{2}}}$. Its acceleration is:
(A) $2 \sin ^{-1} x$
(B) $\frac{4 x}{\left(1-x^{2}\right)^{2}}$
(C) $\frac{2 x}{\left(1-x^{2}\right)^{2}}$
(D) $\frac{2 x}{\left(1-x^{2}\right)^{\frac{3}{2}}}$

SGS Assessment 2014 Form VI Mathematics Extension 1 Page 4

QUESTION SEVEN

The graphs of $y=a x$ and $y=\tan ^{-1}(b x)$ intersect exactly three times if:
(A) $a=b$
(B) $a=-b$
(C) $0<b<a$
(D) $0<a<b$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION EIGHT (12 marks) Use a separate writing booklet. Marks
(a) Let $f(x)=2 \cos ^{-1}\left(\frac{x}{3}\right)$. What is the domain of $f(x)$?
(b) Find the exact value of $\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x$.
(c) Use the expansion of $\cos (A-B)$ to show that $\cos 15^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$.
(d) Solve the equation $2 \sin ^{2} \theta=\sin 2 \theta$ for $0 \leq \theta \leq 2 \pi$.
(e) A particle is moving in simple harmonic motion according to the equation

$$
x=2 \cos \left(\frac{\pi}{10} t\right)+3
$$

where x is the displacement in metres at time t seconds.
(i) Find the amplitude and period of the motion.
(ii) Sketch the displacement-time graph over the first 60 seconds.

SGS Assessment 2014 Form VI Mathematics Extension 1 Page 6
QUESTION NINE (12 marks) Use a separate writing booklet. Marks
(a) The acceleration of a particle moving in a straight line is given by $\ddot{x}=10 x-4 x^{3}$, where x is the displacement in metres at time t seconds. Initially the particle is stationary at $x=\sqrt{6}$ metres.
(i) Find the initial acceleration.
(ii) Find an expression for v^{2} as a function of x.
(b) Consider the polynomial $P(x)=x^{4}-x^{3}-3 x^{2}+5 x-2$.
(i) Show that 1 and -2 are zeroes of $P(x)$.
(ii) Factorise $P(x)$ into linear factors.
(iii) Without the aid of calculus, sketch the graph of $P(x)$, clearly indicating all intercepts with the axes.
(c) (i) Differentiate $x \sin ^{-1} x+\sqrt{1-x^{2}}$.
(ii) Hence evaluate $\int_{0}^{1} \sin ^{-1} x d x$.
(a) Using the fact that $\cos 3 x=4 \cos ^{3} x-3 \cos x$, find general solutions of the equation $\cos 3 x+2 \cos x=0$.
(b) A particle is moving in simple harmonic motion according to $x=2 \sin 3 t-2 \sqrt{3} \cos 3 t$, where x is its displacement in metres from a fixed point O at time t seconds.
(i) Express x in the form $x=R \sin (3 t-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) Find the initial displacement and velocity.
(iii) Find the first time that the particle is 2 metres from O.
(c) A body is moving with velocity $v=4-2 t \mathrm{~ms}^{-1}$, where t is time in seconds. Find the total distance it travels in the first 5 seconds of its motion.

QUESTION ELEVEN (12 marks) Use a separate writing booklet.
(a) If $\tan \alpha$ and $\tan \beta$ are two values of $\tan \theta$ which satisfy the quadratic equation $a \tan ^{2} \theta+b \tan \theta+c=0$:
(i) Find $\tan (\alpha+\beta)$ in terms of a, b and c.
(ii) Show that $\tan ^{2}(\alpha-\beta)=\frac{b^{2}-4 a c}{(a+c)^{2}}$.

QUESTION ELEVEN (Continued)
(b)

Rapunzel is trapped on the top floor of an enchanted tower. She throws a set of keys that unlock the tower to a handsome prince standing on the ground below. The keys are projected with an initial velocity $V \mathrm{~ms}^{-1}$ and at an angle θ to the horizontal, where $0^{\circ}<\theta<90^{\circ}$.
The point of projection is a window located $\frac{V^{2} \sin ^{2} \theta}{g}$ metres above the ground, where g is the acceleration due to gravity. Assume that the prince can't catch and the keys fall to the ground. The horizontal and vertical displacement equations of the keys at time t are given by

$$
x=V t \cos \theta \quad \text { and } \quad y=V t \sin \theta-\frac{g t^{2}}{2}+\frac{V^{2} \sin ^{2} \theta}{g}
$$

(i) Show that the Cartesian equation of the path of the keys is given by

$$
y=x \tan \theta-\frac{g x^{2} \sec ^{2} \theta}{2 V^{2}}+\frac{V^{2} \sin ^{2} \theta}{g}
$$

(ii) Show that the horizontal range of the keys is given by $\frac{V^{2}(1+\sqrt{3}) \sin 2 \theta}{2 g}$ metres.
(iii) The near edge of a moat lies $\frac{V^{2}(1+\sqrt{3})}{4 g}$ metres from the base of the tower.

The moat is $\frac{V^{2}}{2 g}$ metres wide. Find the values of θ for which the keys will land either side of the moat.

SGS Assessment 2014 Form VI Mathematics Extension 1 Page 9

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Sydney Grammar School

2014
Assessment Examination
FORM VI
MATHEMATICS EXTENSION 1
Monday 19th May 2014

Candidate number:

Question One

$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A \bigcirc
B
D \bigcirc

Question Three
AB \qquad
C

D \bigcirc

Question Four

A

B \bigcirc
C

D \bigcirc

Question Five

A \bigcirc
B
C \bigcirc
D \bigcirc

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

2014 Form vi May Assessment SOLUTIONS

* multiple choice

Q1	C
Q2	A
Q3	C
Q4	C
$Q 5$	D
$Q 6$	B
$Q 7$	D

Multiple Choice Working:
QI. $\frac{\pi}{4} \times \frac{\pi}{3}=\frac{\pi^{2}}{12}$
Q2.

$$
\begin{gathered}
7(-\alpha)^{3}+9(-\alpha)^{2}-5 \alpha(-\alpha)=0 \\
-7 \alpha^{3}+9 \alpha^{2}+5 \alpha^{2}=0 \\
-\alpha^{2}(7 \alpha-14)=0 \quad[\alpha \neq 0]
\end{gathered}
$$

QU.

$$
\begin{aligned}
& \dot{x}=2.5-2.5 \sin (0.5 t) \\
& \therefore \dot{x}_{\min }=0
\end{aligned}
$$

QU.

$$
\begin{aligned}
f(x) & =\sin x+c \\
0 & =1+c \rightarrow c=-1 \\
\therefore f(x) & =\sin x-1
\end{aligned}
$$

QL.

$$
\begin{align*}
& \text { A: } \frac{1}{\cot \frac{\pi}{5}}=\tan \frac{\pi}{5} \\
& \text { B: } \cot \left(\frac{3 \pi}{10}\right)=\tan \left(\frac{\pi}{2}-\frac{3 \pi}{10}\right)=\tan \left(\frac{\pi}{5}\right) \\
& \text { C: } \frac{2 \tan \left(\frac{10}{5}\right)}{1-\tan ^{2}\left(\frac{\pi}{10}\right)}=\tan \left(2 \times \frac{\pi}{10}\right)=\tan \left(\frac{\pi}{5}\right)
\end{align*}
$$

\geq could have also just put it into a calculator.

Q6.

$$
\begin{aligned}
\dot{x} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(\frac{1}{2} \cdot \frac{4}{1-x^{2}}\right) \\
& =\frac{d}{d x}\left(2\left(1-x^{2}\right)^{-1}\right) \\
& =-2\left(1-x^{2}\right)^{-2} x-2 x \\
& =\frac{4 x}{\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

$Q 7$.

$$
\begin{aligned}
& y=a x \rightarrow \frac{d y}{d x}=a \rightarrow m=a \\
& y=\tan ^{-1}(b x) \rightarrow\left\{\frac{d y}{d x}=\frac{b}{1+b^{2} x^{2}}\right.
\end{aligned}
$$

when $x=0, m_{T}=b$

QUESTION $8:$
a) $-1 \leqslant \frac{x}{3} \leqslant 1 \quad \therefore$ Domain: $-3 \leqslant x \leqslant 3$
b) $\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x=\left[\sin ^{-1} \frac{x}{2}\right]_{0}^{\sqrt{3}}$

$$
=\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} 0
$$

$$
=\frac{\pi}{3}
$$

c)

$$
\left.\begin{array}{rl}
\cos 15^{\circ} & =\cos \left(45^{\circ}-30^{\circ}\right) \\
& =\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} \\
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \text { as required }
\end{array}\right\} \sqrt{ } \text { a }
$$

d)

$$
\begin{aligned}
& 2 \sin ^{2} \theta=\sin 2 \theta \\
& 2 \sin \theta(\sin \theta-\cos \theta)=0 \quad \text { or } \sin \theta-\cos \theta=0 \\
& \therefore 2 \sin \theta=0 \quad \tan \theta=1 \quad[\cos \theta \neq 0] \\
& \sin \theta=0 \quad \theta \theta=\frac{\pi}{4}, \frac{5 \pi}{4} \\
& \therefore \theta=0, \pi, 2 \pi \quad
\end{aligned}
$$

e)
i)
ii)

$$
\begin{aligned}
& \text { Amplitude }=2 \text { metres } \\
& \text { Period }=2 \pi \div \frac{\pi}{10} \\
& =20 \text { seconds }
\end{aligned}
$$

QUESTION G:
a) When $t=0: v=0 \mathrm{~ms}^{-1}$

$$
x=\sqrt{6} \mathrm{~m}
$$

i)

$$
\begin{aligned}
\ddot{x} & =10 x-4 x^{3} \\
& =10(\sqrt{6})-4(\sqrt{6})^{3} \\
& =10 \sqrt{6}-24 \sqrt{6} \\
& =-14 \sqrt{6} \mathrm{~ms}^{-2} \quad \text { (exact value) }
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =10 x-4 x^{3} \\
\frac{1}{2} v^{2} & =5 x^{2}-x^{4}+c
\end{aligned}
$$

at $x=\sqrt{6}, v=0$:

$$
\begin{aligned}
\quad 0^{\prime} & =5(\sqrt{6})^{2}-(\sqrt{6})^{4}+c \\
\therefore c & =6 \\
\therefore v^{2} & =10 x^{2}-2 x^{4}+12
\end{aligned}
$$

b) i)

$$
\begin{aligned}
P(1) & =(1)^{4}-(1)^{3}-3(1)^{2}+5(1)-2 \\
& =0 \\
P(-2) & =(-2)^{4}-(-2)^{3}-3(-2)^{2}+5(-2)-2 \\
& =0
\end{aligned}
$$

ii) METHOD 1:

$$
\begin{aligned}
x^{4}-x^{3}-3 x^{2}+5 x-2 & =(x-1)(x+2)\left(x^{2}+k x+1\right) \\
& =\left(x^{2}+x-2\right)\left(x^{2}+k x+1\right)
\end{aligned}
$$

Equating coff's of x^{3}

$$
\begin{aligned}
& -1=k+1 \\
& \therefore k=-2
\end{aligned}
$$

$$
\begin{aligned}
\therefore P(x) & =(x-1)(x+2)\left(x^{2}-2 x+1\right) \\
& =(x-1)^{3}(x+2)
\end{aligned}
$$

OR
METHOD 2:
Let the zeroes be 1, -2, $\alpha \neq \beta$
Sum of roots: $1+(-2)+\alpha+\beta=-\frac{(-1)}{1}$

$$
\begin{equation*}
\alpha+\beta=2 \tag{1}
\end{equation*}
$$

either
Product of roots: $1 \times(-2) \times \alpha \times \beta=\frac{-2}{1}$

$$
\begin{equation*}
\alpha \beta=1 \tag{2}
\end{equation*}
$$

Rearrange (1): $\beta=2-\alpha \quad\left(1{ }^{*}\right.$
Sub $\mathbb{1}^{*}$ into (2): $\quad \alpha(2-\alpha)=1$

$$
\begin{array}{r}
\alpha^{2}-2 \alpha+1=0 \\
(\alpha-1)^{2}=0 \\
\therefore \alpha=1
\end{array}
$$

Subinc (1): $\quad \beta=2-1$

$$
=1
$$

$$
\therefore P(x)=(x-1)^{3}(x+2)
$$

OR
METHOD 3:

$$
\begin{aligned}
&(x-1)(x+2)=x^{2}+x-2 \\
& x ^ { 2 } + x - 2 \longdiv { } \begin{array} { r l }
{ \frac { x ^ { 2 } - 2 x + 1 } { x ^ { 4 } - x ^ { 3 } - 3 x ^ { 2 } + 5 x - 2 } } \\
{ \frac { x ^ { 4 } + x ^ { 3 } - 2 x ^ { 2 } } { - 2 x ^ { 3 } - x ^ { 2 } + 5 x } } \\
{ \frac { - 2 x ^ { 3 } - 2 x ^ { 2 } + 4 x } { x ^ { 2 } + x } - 2 } \\
{ x ^ { 2 } + x - 2 }
\end{array} \\
& \frac{0}{0} \\
& \therefore P(x)=(x-1)(x+2)\left(x^{2}-2 x+1\right)
\end{aligned}
$$

iii)

c) i) $\frac{d}{d x}\left(x \sin ^{-1} x+\sqrt{1-x^{2}}\right)$
\qquad
ii) $\int_{0}^{1} \sin ^{-1} x d x=\left[x \sin ^{-1} x+\sqrt{1-x^{2}}\right]_{0}^{1}$

$$
=1 \times \frac{\pi}{2}+0-(0+1)
$$

$$
=\frac{\pi}{2}-1
$$

QUESTION IO:
a)

$$
\begin{array}{r}
4 \cos ^{3} x-3 \cos x+2 \cos x=0 \\
4 \cos ^{3} x-\cos x=0 \\
\cos x\left(4 \cos ^{2} x-1\right)=0 \\
\cos x(2 \cos x-1)(2 \cos x+1)=0 \\
\therefore \cos x=0, \frac{1}{2} \text { or }-\frac{1}{2}
\end{array}
$$

General solutions:

$$
\begin{aligned}
& \cos x=0 \rightarrow x=2 n \pi \pm \frac{\pi}{2} \quad(n \in z) \\
& \cos x=\frac{1}{2} \rightarrow x=2 n \pi \pm \frac{\pi}{3} \quad(n \in z) \\
& \cos x=-\frac{1}{2} \rightarrow x=2 n \pi \pm \frac{2 \pi}{3} \quad(n \in z)
\end{aligned}
$$

Alternatively:

$$
\begin{aligned}
& \cos x=0 \rightarrow x=\frac{\pi}{2}+n \pi \\
& \cos x= \pm \frac{1}{2} \rightarrow x=n \pi \pm \frac{\pi}{3}
\end{aligned}
$$

b) i)

$$
\begin{array}{rlrl}
2 \sin 3 t-2 \sqrt{3} \cos 3 t & =R \sin (3 t-\alpha) \\
& =R \sin 3 t \cos \alpha-R \cos 3 t \sin \alpha \\
& R \cos \alpha=2 & \\
R \sin \alpha=-2 \sqrt{3} & & \\
R^{2}=2^{2}+(2 \sqrt{3})^{2} & A \tan \alpha=\frac{2 \sqrt{3}}{2} \\
& =16 & & =\sqrt{3} \\
R=4 & \therefore \alpha=\frac{\pi}{3} \\
\therefore x & =4 \sin \left(3 t-\frac{\pi}{3}\right)
\end{array}
$$

ii) $\dot{x}=12 \cos \left(3 t-\frac{\pi}{3}\right)$
when $t=0: \quad x=4 \sin \left(-\frac{\pi}{3}\right)$

$$
=-2 \sqrt{3} \mathrm{~m}
$$

$$
\dot{x}=12 \cos \left(-\frac{\pi}{3}\right)
$$

$$
=6 \mathrm{~m} / \mathrm{s}
$$

iii) since starts at $x=-2 \sqrt{3} \mathrm{~m} \ldots$ first time 2 m from origin $\rightarrow x=-2 \mathrm{~m}$

$$
\begin{array}{r}
-2=4 \sin \left(3 t-\frac{\pi}{3}\right) \\
\sin \left(3 t-\frac{\pi}{3}\right)=-\frac{1}{2} \\
3 t-\frac{\pi}{3}=-\frac{\pi}{6}, \frac{7 \pi}{6}, \ldots \\
t=\frac{\pi}{18}, \frac{\pi}{2}, \ldots
\end{array}
$$

\therefore the first time is at $t=\frac{\pi}{18} \mathrm{~s}$.
C)

$$
\begin{aligned}
& \text { distance }=\text { total area } \\
& \text { travelled } \\
&=\frac{1}{2} \times 2 \times 4+\frac{1}{2} \times 3 \times 6 \\
&=4+9 \\
&=13 \mathrm{~m}
\end{aligned}
$$

Alternatively:

$$
\begin{aligned}
\dot{x} & =4-2 t \\
x & =4 t-t^{2}+c \\
& =t(4-t)+c \\
\text { Total } & =2 \times x_{2}+\left|x_{5}\right| \\
\text { distance } & =2(8-4)+|20-25| \\
& =2(5) \\
& =8+5 \\
& =13 \mathrm{~m}
\end{aligned}
$$

QUESTION II:

$$
\text { a) i) } \begin{aligned}
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& =\frac{-\frac{b}{a}}{1-\frac{c}{a}} \\
& =\frac{b}{c-a}
\end{aligned}
$$

ii)

$$
\left.\begin{array}{rl}
\tan ^{2}(\alpha-\beta) & =\left(\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}\right)^{2} \\
& =\frac{\tan ^{2} \alpha-2 \tan \alpha \tan \beta+\tan ^{2} \beta}{(1+\tan \alpha \tan \beta)^{2}} \\
& =\frac{(\tan \alpha+\tan \beta)^{2}-4 \tan \alpha \tan \beta}{(1+\tan \alpha \tan \beta)^{2}} \\
& =\frac{\left(-\frac{b}{a}\right)^{2}-4\left(\frac{c}{a}\right)}{\left(1+\frac{c}{a}\right)^{2}} \\
& =\frac{\frac{b^{2}}{a^{2}}-\frac{4 c}{a}}{\left(1+\frac{c}{a}\right)^{2}} \times \frac{a^{2}}{a^{2}} \\
& =\frac{b^{2}-4 a c}{(a+c)^{2}}
\end{array}\right\}
$$

b) 1)

$$
\begin{aligned}
t & =\frac{x}{v \cos \theta} \\
y & =v \times \frac{x}{v \cos \theta} \times \sin \theta-\frac{9}{2} \times \frac{x^{2}}{v^{2} \cos ^{2} \theta}+\frac{v^{2} \sin ^{2} \theta}{g} \\
& =x \tan \theta-\frac{g x^{2} \sec ^{2} \theta}{2 v^{2}}+\frac{v^{2} \sin ^{2} \theta}{9} \text { as required }
\end{aligned}
$$

ii) The keys will hit the ground when $y=0$

METHOD 1:

$$
\begin{aligned}
& 0=v t \sin \theta-\frac{g t^{2}}{2}+\frac{v^{2} \sin ^{2} \theta}{g} \\
& a=\frac{g}{2} \\
& b=v \sin \theta \\
& c=\frac{v^{2} \sin ^{2} \theta}{g}
\end{aligned}
$$

$$
t=\frac{-v \sin \theta \pm \sqrt{v^{2} \sin ^{2} \theta-4 x-\frac{9}{2} \times \frac{v^{2} \sin ^{2} \theta}{9}}}{2 x-\frac{9}{2}}
$$

$$
=\frac{-v \sin \theta \pm V \sin \theta \sqrt{3}}{-g}
$$

$$
=\frac{v \sin \theta(1+\sqrt{3})}{9} \quad(\text { since } t>0)
$$

$$
\begin{aligned}
x & =\frac{v \cos \theta \times v \sin \theta(1+\sqrt{3})}{g} \\
& =\frac{v^{2}(r+\sqrt{3}) \sin 2 \theta}{2 g} \text { as required. }
\end{aligned}
$$

METHOD 2 :

$$
\begin{aligned}
0 & =x \tan \theta-\frac{g x^{2} \sec ^{2} \theta}{2 v^{2}}+\frac{v^{2} \sin ^{2} \theta}{g} \\
a & =-\frac{g \sec ^{2} \theta}{2 v^{2}} \\
b & =\tan \theta \\
c & =\frac{v^{2} \sin ^{2} \theta}{g} \\
x & =-\tan \theta \pm \sqrt{\tan ^{2} \theta-4 \times-\frac{g \sec ^{2} \theta}{2 v^{2}} \times \frac{v^{2} \sin 2 \theta}{g}} \\
& =\frac{(-\tan \theta \pm \tan \theta \sqrt{3}) \times v^{2}}{-g \sec \theta} \\
& =\frac{v^{2} \tan \theta}{2 v^{2}} \\
& =\frac{v^{2} \theta(1+\sqrt{3}) \cos ^{2} \theta}{g} \quad(\operatorname{since} x>0) \\
& =\frac{v^{2} \sin \theta \cos \theta(1+\sqrt{3})}{g} \quad\left(\operatorname{since} \tan \theta=\frac{\sin \theta}{\cos \theta}\right)
\end{aligned}
$$

$$
=\frac{v^{2}(1+\sqrt{3}) \sin 2 \theta}{2 g} \text { as reaured } \quad\left(\begin{array}{l}
(\sin c e \\
\left.\sin \theta \cos \theta=\frac{\sin 2 \theta}{2}\right)
\end{array}\right.
$$

iii) * N ear side of moat:

$$
\begin{aligned}
& 0<\frac{v^{2}(1+\sqrt{3}) \sin 2 \theta}{2 g}<\frac{v^{2}(1+\sqrt{3})}{4 \theta} \\
& 0<\sin 2 \theta<\frac{1}{2} \text { for } 0^{\circ}<2 \theta<180^{\circ}
\end{aligned}
$$

$$
\begin{array}{lll}
0^{\circ}<2 \theta<30^{\circ} & \text { or } & 150^{\circ}<2 \theta<180^{\circ} \\
0<\theta<15^{\circ} & 75^{\circ}<\theta<90^{\circ}
\end{array}
$$

* Far side of moat:

$$
\begin{aligned}
& \frac{v^{2}(1+\sqrt{3}) \sin 2 \theta}{2 g}>\frac{v^{2}(1+\sqrt{3})}{4 g}+\frac{v^{2}}{2 g} \\
& \frac{2 v^{2}(1+\sqrt{3}) \sin 2 \theta}{4 g}>\frac{v^{2}(3+\sqrt{3})}{4 g} \\
& \sin 2 \theta>\frac{\sqrt{3}(\sqrt{3}+1)}{2(1+\sqrt{3})}
\end{aligned}
$$

$$
\sin 2 \theta>\frac{\sqrt{3}}{2} \text { for } 0^{\circ}<2 \theta<180^{\circ}
$$

$$
\begin{aligned}
& 60^{\circ}<2 \theta<120^{\circ} \\
& 30^{\circ}<\theta<60^{\circ}
\end{aligned}
$$

$$
\therefore 0^{\circ}<\theta<15^{\circ}, 30^{\circ}<\theta<60^{\circ} \text { or } 75^{\circ}<\theta<90^{\circ}
$$

