BAULKHAM HILLS HIGH SCHOOL
2015
YEAR 12 June - Task 3

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 60 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions
- Start a new page for each question

Total marks - 36
Exam consists of 5 pages.

Standard integrals provided on page 5

Question 1 (9 marks) Start on the appropriate page of your answer booklet.
a) Find the indefinite integrals:
i) $\int \frac{d x}{\sqrt{x(x-4)}}$
ii) $\int \frac{e^{\sin ^{-1} x}}{\sqrt{1-x^{2}}} d x$
iii) $\int \frac{1}{1+e^{x}} d x$
b) Evaluate:

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{2-\sin x+2 \cos x}
$$

Question 2 (9 marks) Start on the appropriate page of your answer booklet.
a) i) If $\frac{3 x^{2}-4 x+3}{(x-1)\left(x^{2}-x+2\right)} \equiv \frac{A}{x-1}+\frac{B x+C}{x^{2}-x+2}$

Find A, B and C
ii) Hence determine
$\int \frac{3 x^{2}-4 x+3}{(x-1)\left(x^{2}-x+2\right)} d x$
b) The base of a solid is the region bounded by $y=\sqrt{\ln (x+1)}, y=-\sqrt{\ln (x+1)}$ and $x=3$

Each cross-section perpendicular to the x-axis is a trapezium, as shown in the diagram. The trapezium has three equal sides and its base is twice the length of any one of the equal sides.
i) Show that $V=\frac{3 \sqrt{3}}{4} \int_{0}^{3} \ln (x+1) d x$
ii) Find the volume of the solid.

Question 3 (8 marks) Start on the appropriate page of your answer booklet.
a) By using the relationship $\int_{0}^{a} f(a-x) d x=\int_{0}^{a} f(x) d x$ or otherwise, evaluate

$$
\int_{0}^{\pi} \frac{x \sin ^{3} x}{1+\cos ^{2} x} d x
$$

b) Find $\int \frac{d x}{x^{2} \sqrt{x^{2}+4}}$

Question 4 (10 marks) Start on the appropriate page of your answer booklet.
a) The area bounded by $y^{2}=2-x$ and $x=0$ is rotated about the line $x=3$.

Using the method of cylindrical shells,
i) Show that the volume of a cylindrical shell at a distance x from the origin and thickness Δx is given by

$$
4 \pi(3-x) \sqrt{2-x} \Delta x
$$

ii) Find the volume of the solid.
b) If $I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x^{2}} d x$
i) Show that

$$
I_{n}=\frac{n-1}{n+2} I_{n-2}
$$

ii) Hence evaluate

$$
\int_{0}^{1} x^{4} \sqrt{1-x^{2}} d x
$$

