(a) Draw a neat sketch of $x y=8$, clearly indicating on the sketch, the coordinates of the foci, vertices, and the equations of the directrices.
(b) A raindrop falls so that its velocity $v \mathrm{~m} / \mathrm{s}$ at time t seconds is given by

$$
\frac{d v}{d t}=\frac{1}{3}(3 g-2 v)
$$

where g is the acceleration due to gravity.
(i) Show that $v=\frac{3 g}{2}\left(1-e^{-\frac{2}{3} t}\right)$.
(ii) Find the limiting velocity of the raindrop in terms of g.
(iii) Find the time when the velocity reaches $\frac{1}{2} g \mathrm{~m} / \mathrm{s}$.
(c) The rate of increase of the population, $P(t)$, of a particular bird species at time t years is given by the equation:

$$
\frac{d P}{d t}=k P(Q-P)
$$

where k and Q are positive constants and $P(0)<Q$.
(i) Verify that the expression $P(t)=\frac{Q C}{C+e^{-k Q t}}$, where C is a constant, is a solution of the equation.
(ii) Describe the behaviour of P as $t \rightarrow \infty$.
(iii) Describe what happens to the rate of increase of the population as $t \rightarrow \infty$.

Question 2 (15 Marks) (Start a new page)

(a) A particle of unit mass is projected vertically upwards form the ground with initial speed $u \mathrm{~m} / \mathrm{s}$. If air resistance at any time t seconds is proportional to the velocity at that instant, and assuming air resistance is $-k v$,
(i) Prove that if the highest point is reached by the particle in time T seconds then

$$
k T=\log \left(1+\frac{k u}{g}\right)
$$

where g is the acceleration due to gravity.
(ii) If the highest point reached is at a height h metres above the ground, prove that $h k=u-g T$.
(b) The normal at a variable point $P\left(2 p, \frac{2}{p}\right)$ on $x y=4$, given by $y=p^{2} x-2 p^{3}+\frac{2}{p}$, meets the x - axis at Q.
(i) Find the coordinates of Q.
(ii) Find the coordinates of the midpoint, M, of $P Q$.
(iii) Hence, find the locus of M.

Question 3 (15 Marks)

(a) (i) Prove that the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$ square units.
(ii) Hence, by the method of cylindrical shells, find the volume of the solid formed when the area is rotated through 1 complete revolution about the line $y=b$.
(b) The area enclosed by the graph of the function $y=e^{2 x}$, the y-axis and the horizontal line $y=e^{2}$ is rotated about the y-axis.
(i) Show that the volume is given by $\Delta V=\sum_{0}^{1} 2 \pi x\left(e^{2}-e^{2 x}\right) \Delta x$.
(ii) Hence, find the exact volume of the solid of revolution formed.
(c) If the gradients of the tangents drawn to the curves $x y=c^{2}$ and $y^{2}=4 a x$ at the point of intersection are m and M respectively. Prove that $m=-2 M$.

Question 4 (15 Marks) (Start a new page)

(c) A particle moves in a straight line so that it's acceleration is inversely proportional to the square of its distance from a point O in the line and is directed towards O. It starts from rest at a distance a units from O.
(i) What is its velocity when it first reaches a distance, $\frac{a}{2}$ units, from O ?
(ii) Show that the time taken to first reach this distance in part (i) is given by

$$
\begin{aligned}
& t=\frac{(\pi+2) a^{\frac{3}{2}}}{4 \sqrt{2 k}}, \text { where } k \text { is a constant, } \\
& \text { given that } \frac{d}{d x}\left[\sqrt{x(a-x)}+\frac{a}{2} \sin ^{-1}\left(\frac{a-2 x}{a}\right)\right]=-\sqrt{\frac{x}{a-x}}
\end{aligned}
$$

Question 4 is on the next page.
(b) A is the area of the region R bounded by the upper branch of the hyperbola $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$, the $x-$ axis and the lines $x= \pm a$.
(i) Show that $A=\frac{L b}{2}[\sqrt{2}+\ln (1+\sqrt{2})]$ square units, where L the length of the base of R is $2 a$ units.
(ii) S is the solid whose base is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Cross sections
perpendicular to the base and to the minor axis, are plane figures similar to region R where the line of intersection of the planes is the base length of R. Find the volume of S.

~END OF TEST ~

1 (b) (ii) as $t \rightarrow \infty v \rightarrow \frac{3 g}{2}$	Correct answer $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{~ m k}$	
$1 \text { (b) (iii) } \begin{aligned} & \text { when } v=\frac{g}{2} \\ & \therefore \frac{1}{3}=1-e^{-\frac{2 t}{3}} \\ & \therefore-\frac{2}{3} t=\ln \left(\frac{2}{3}\right) \\ & \therefore t=-\frac{3}{2} \ln \left(\frac{2}{3}\right) \quad \text { or } t=\frac{3(\ln 3-\ln 2)}{2} \end{aligned}$	Correct substitution \& simplification $\rightarrow \mathbf{1 m k}$ Taking logs of both sides \& simplification $\boldsymbol{\rightarrow} \mathbf{1}$ mk	
$\begin{aligned} & 1 \text { (c) (i) } P=\frac{Q C}{C+e^{-k Q t}} \\ & \begin{aligned} \therefore \frac{d P(t)}{d t} & =\frac{Q^{2} C k e^{-k Q t}}{\left(C+e^{-k Q t}\right)^{2}} \\ & =\frac{k Q C}{C+e^{-k Q t} \times \frac{Q e^{-k Q t}}{C+e^{-k Q t}}} \\ & =k P(Q-P) \\ \text { As }(Q-P) & =Q-\frac{Q C}{C+e^{-k Q t}} \\ & =\frac{Q C+Q e^{-k Q t}-Q C}{C+e^{-k Q t}} \\ & =\frac{Q e^{-k Q t}}{C+e^{-k Q t}} \end{aligned} \end{aligned}$	Correct differential $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$ Simplification $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$ Showing $(Q-P)=\frac{Q e^{-k Q t}}{C+e^{-k Q t}} \rightarrow \mathbf{1} \mathbf{m k}$	
1 (c) (ii) as $t \rightarrow \infty, P \rightarrow Q$ as $e^{-k Q t} \rightarrow 0$	Correct answer with some explaination $\boldsymbol{\rightarrow} \mathbf{1}$ mk	
1 (c) (iii) as $t \rightarrow \infty, \frac{d P(t)}{d t} \rightarrow 0$ as $P \rightarrow Q$	Correct answer with some explaination $\boldsymbol{\rightarrow} \mathbf{1}$ mk	

Question 2		
(a) (i) $m \ddot{x}=m(-g)-m k v \quad$ (upwards) $\begin{aligned} & \therefore \ddot{x}=-g-k v \text { i.e. } \frac{d v}{d t}=-g-k v \\ & \therefore \frac{1}{k} \int_{u}^{0} \frac{k d v}{-(g+k v)}=\int_{0}^{T} d t \\ & \therefore-\frac{1}{k}[\ln \mid g+k v]_{u}^{0}=T \\ & \therefore-\ln \left\|\frac{g}{g+k u}\right\|=k T \\ & \therefore \ln \left\|\frac{g+k u}{g}\right\|=k T \rightarrow k T=\ln \left\|1+\frac{k u}{g}\right\| \end{aligned}$	Correct equation $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$ Correct integral $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$ Correct integration $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$ Correct simplification $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$	
2 (a) (ii) Highest point reached is when $v=0$ $\begin{aligned} & \therefore \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-g-k v \rightarrow v \frac{d v}{d x}=-g-k v \\ & \therefore-\int_{u}^{0} \frac{v d v}{g+k v}=\int_{0}^{h} d x \\ & \therefore-\int_{u}^{0} \frac{1}{k}-\frac{g d v}{k(g+k v)}=\int_{0}^{h} d x \\ & \therefore-\int_{u}^{0} 1-\frac{g d v}{(g+k v)}=k h \\ & \therefore-\left[v-\frac{g}{k} \ln (g+k v)\right]_{u}^{0}=k h \\ & \therefore-\left[-u+\frac{g}{k} \ln \left(\frac{g+k u}{g}\right)\right]=h k \end{aligned}$ $\therefore h k=u-g T$ as $k T=\ln \left\|1+\frac{k u}{g}\right\|$ from part(i)	$v \frac{d v}{d h}=-g-k v \rightarrow \mathbf{1} \mathbf{m k}$ Correct integral $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$ $\frac{v d v}{g+k v}=\frac{1}{k}-\frac{g d v}{k(g+k v)} \rightarrow \mathbf{1} \mathbf{m k}$ Correct integration $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$ Correct simplification \& connecting answer from (i) $\rightarrow 1 \mathrm{mk}$	

2 (b) $x y=4$ Eqn. of normal is $y=p^{2} x-2 p^{3}+\frac{2}{p}$ (i) $\quad \therefore$ coordinates of Q are $\left(2 p-\frac{2}{p^{3}}, 0\right)$	Correct coordinates $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$	
(ii) $\begin{aligned} & M=\left[\left(\left(\frac{2 p+2 p-\frac{2}{p^{3}}}{2}\right),\left(\frac{\frac{2}{p}}{2}\right)\right]\right. \\ & M=\left[\left(2 p-\frac{1}{p^{3}}\right), \frac{1}{p}\right] ; p \neq 0 \end{aligned}$	Correct midpoint formula \rightarrow 1 mk Correct simplification \& restriction for $p \rightarrow$ 1 mk	Alternatively can award 1 mk each for x and y coordinate of midpoint.
$\text { (iii) } \begin{aligned} & \quad x=2 p-\frac{1}{p^{3}} ; y=\frac{1}{p} \\ & \therefore p=\frac{1}{y} ; y \neq 0 \\ & \therefore \boldsymbol{x}=\frac{2}{y}-y^{3} \text { is the locus of } \boldsymbol{M} ; \boldsymbol{y} \neq \mathbf{0} \end{aligned}$	$\rightarrow 1 \mathrm{mk}$ $\rightarrow \mathbf{1 m k}$ equation $\rightarrow \mathbf{1} \mathbf{m k}$ restriction $y \neq 0$	
Question 3		
(a) (i) $\begin{aligned} & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \rightarrow y=\frac{b}{a} \sqrt{a^{2}-x^{2}} \\ & \begin{aligned} \therefore \text { Area } & =\frac{4 b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x \\ & =\frac{4 b}{a} \times \frac{1}{4} \pi a^{2} \quad \text { since } \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x \text { is a } \end{aligned} \end{aligned}$ quadrant of a circle, centre O radius a units. \therefore Area $=\pi a b$ sq. units.	$\rightarrow \mathbf{1 m k}$ For $\frac{1}{4} \pi a^{2} \rightarrow \mathbf{1} \mathbf{~ m k}$ $\rightarrow \mathbf{1} \mathbf{m k}$ explanation of using $\frac{1}{4} \pi a^{2}$	

A slice taken through the ellipse perpendicular to the $x-$ axis is the annulus with inner radius $(b-y)$ and outer radius $(b+y)$.
\therefore Area of cross- section of slice

$$
=\pi\left[(b+y)^{2}-(b-y)^{2}\right]=4 \pi b y
$$

\therefore Volume of slice $\Delta V=4 \pi b y \Delta x$
\therefore Volume of solid

$$
\begin{aligned}
V & =4 \pi b \int_{-a}^{a} y d x \\
& =8 \pi b \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x \\
& =\frac{8 \pi b^{2}}{a} \times \frac{1}{4} \pi a^{2} \text { from part (i) } \\
& =2 \pi^{2} a b^{2} \text { cubic units. }
\end{aligned}
$$

Showing area of cross section is $4 \pi a y \rightarrow \mathbf{1} \mathbf{m k}$

Correct integral $\rightarrow \mathbf{1} \mathbf{m k}$

Correct Answer $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$

3 (c) Substituting $y^{2}=4 a x$ into $x y=c^{2}$ we get $y^{3}=4 a c^{2}=2 a^{3}$ as $2 c^{2}=a^{2}$.

Let P be the point of intersection where
$\therefore y=a \sqrt[3]{2}$ and $x=\frac{a(\sqrt[3]{4})}{4}$
By differentiating $x y=c^{2}$ we get $\frac{d y}{d x}=-\frac{y}{x}$
\therefore the gradient of the hyperbola $x y=c^{2}$ at P is

$$
m=\frac{-a(\sqrt[3]{2})}{\left(\frac{a}{4}\right)(\sqrt[3]{4})}=\frac{-4}{\sqrt[3]{2}} \rightarrow \mathrm{~A}
$$

By differentiating $y^{2}=4 a x$ we get $\frac{d y}{d x}=\frac{2 a}{y}$
\therefore gradient of $y^{2}=4 a x$ is given by
$M=\frac{2 a}{a(\sqrt[3]{2})}=\frac{2}{\sqrt[3]{2}} \rightarrow \mathrm{~B}$
$\therefore \mathrm{A} \div \mathrm{B} \rightarrow \quad m=-2 M \quad$ as required.
$\rightarrow 1 \mathrm{mk}$
$\rightarrow 1 / 2 \mathrm{mk}$
$\rightarrow 1 \mathrm{mk}$
$\rightarrow 1 / 2 \mathrm{mk}$
$\rightarrow \mathbf{1 m k}$

4(a) (i) $\begin{aligned} & \ddot{x}=-\frac{k}{x^{2}} \\ & \therefore \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-\frac{k}{x^{2}} \\ & \therefore \frac{1}{2} v^{2}=-\int \frac{k}{x^{2}} d x=\frac{k}{x}+c \end{aligned}$ Now $v=\mathrm{o}$ when $x=a \therefore c=-\frac{k}{x}$ $\therefore v^{2}=2 k\left(\frac{1}{x}-\frac{1}{a}\right)$ Now $0<x<a$ but motion is moving towards the origin for $t>0$. $\therefore v=-\sqrt{2 k\left(\frac{1}{x}-\frac{1}{a}\right)}$ For $x=1 / 2 a, v=-\sqrt{\frac{2 k}{a}}$	$\rightarrow 1 / 2 \mathrm{mk}$ $\rightarrow 1 / 2 \mathrm{mk}$ $\rightarrow \mathbf{1 m k}$ Correct answer $\boldsymbol{\rightarrow} \mathbf{1 m k}$	
$\text { 4 (a) (ii) } \begin{aligned} & \therefore \frac{1}{v}=\frac{d t}{d x}=-\frac{1}{\sqrt{2 k\left(\frac{a-x}{a x}\right)}}=-\frac{1}{\sqrt{\frac{2 k}{a}\left(\frac{a-x}{x}\right)}} \\ &=-\sqrt{\frac{a}{2 k}} \cdot \sqrt{\frac{x}{a-x}}=\sqrt{\frac{a}{2 k}} \cdot \int_{\frac{a}{2}}^{a} \sqrt{\frac{x}{a-x}} \\ &=-\sqrt{\frac{a}{2 k}}\left[\sqrt{x(a-x)}+\frac{1}{2} a \sin ^{-1}\left(\frac{a-2 x}{a}\right)\right]_{\frac{a}{2}}^{a} \\ &=-\sqrt{\frac{a}{2 k}}\left[\frac{1}{2} a \sin ^{-1}(-1)-\frac{a}{2}-\frac{1}{2} a \sin (0)\right] \\ & \therefore t=\frac{(\pi+2) a^{\frac{3}{2}}}{4 \sqrt{2 k}} \end{aligned}$	Correct $\frac{1}{v}$ equation $\boldsymbol{\rightarrow} \mathbf{1} \mathbf{m k}$ $\sqrt{\frac{a}{2 k}} \cdot \int_{\frac{a}{2}}^{a} \sqrt{\frac{x}{a-x}} \rightarrow \mathbf{1} \mathbf{m k}$ Correct substitution $\rightarrow \mathbf{1 m k}$	

4 (b) (i)

$\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$ can be written as $y= \pm \frac{b}{a} \sqrt{a^{2}+x^{2}}$
\therefore Area of region R is given by

$$
\text { Area }=\frac{2 b}{a} \int_{0}^{a} \sqrt{a^{2}+x^{2}}
$$

Let $x=a \tan \theta . \therefore$ at $x=a, \tan \theta=1 \therefore \theta=\frac{\pi}{4}$
At $x=0, \tan \theta=0$ so $\theta=0$. Also $d x=a \sec ^{2} \theta d \theta$

$$
\begin{aligned}
\therefore \text { Area }=A & =\frac{2 b}{a} \int_{0}^{\frac{\pi}{4}} \sqrt{a^{2}+a^{2} \tan ^{2} \theta} \cdot \sec ^{2} \theta d \theta \\
& =2 a b \int_{0}^{\frac{\pi}{4}} \sqrt{1+\tan ^{2} \theta} \cdot \sec ^{2} \theta d \theta \\
& =2 a b \int_{0}^{\frac{\pi}{4}} \sec ^{3} \theta d \theta \text { where } I=\int \sec ^{3} \theta d \theta
\end{aligned}
$$

$\rightarrow \mathbf{1 m k}$

1 mk

Note $L=2 a=2 x$ so $a=x$.

$$
\therefore \text { Area }=A=x b|\sqrt{2}+\ln (1+\sqrt{2})|
$$

But $x=\frac{a}{b} \sqrt{b^{2}-y^{2}}$ and let $K=\lfloor\sqrt{2}+\ln (1+\sqrt{2})\rfloor$

$$
\therefore A(y)=\frac{L K}{2} \sqrt{b^{2}-y^{2}}
$$

Now volume of slice, $\Delta V=A(y) \Delta y$

$$
\therefore \Delta V=\frac{L K}{2} \sqrt{b^{2}-y^{2}} \Delta y
$$

\therefore volume of sum of slices,

$$
\begin{aligned}
V & =\frac{L K}{2} \lim _{\Delta y \rightarrow 0} \sum_{-b}^{b} \sqrt{b^{2}-y^{2}} \Delta y \\
& =\frac{L K}{2} \int_{-b}^{b} \sqrt{b^{2}-y^{2}} d y \\
& =\frac{L K}{2} \cdot \frac{1}{2} \pi b^{2}
\end{aligned}
$$

(Note: this integral gives area of semi circle radius b)
\therefore Volume of $S=\frac{\pi L b^{2}}{4}[\sqrt{2}+\ln (1+\sqrt{2})]$ in terms of L and b

$$
\text { or } \quad=\frac{\pi a b^{2}}{2}[\sqrt{2}+\ln (1+\sqrt{2})] \text { in terms of } a \text { and } b .
$$

\square
~ End of Test ~

