Question 1 (15 Marks)

- (a) Draw a neat sketch of xy = 8, clearly indicating on the sketch, the coordinates of the foci, vertices, and the equations of the directrices.
- (b) A raindrop falls so that its velocity v m/s at time t seconds is given by

$$\frac{dv}{dt} = \frac{1}{3}(3g - 2v)$$

where *g* is the acceleration due to gravity.

(i) Show that
$$v = \frac{3g}{2} \left(1 - e^{-\frac{2}{3}t} \right)$$
. 3

(ii) Find the limiting velocity of the raindrop in terms of g.

(iii) Find the time when the velocity reaches
$$\frac{1}{2}g$$
 m/s. 2

(c) The rate of increase of the population, P(t), of a particular bird species at time t years is given by the equation:

$$\frac{dP}{dt} = kP(Q - P)$$

where *k* and *Q* are positive constants and P(0) < Q.

(i) Verify that the expression $P(t) = \frac{QC}{C + e^{-kQt}}$, where C is a constant, 3 is a solution of the equation

is a solution of the equation.

- (ii) Describe the behaviour of P as $t \rightarrow \infty$.
- (iii) Describe what happens to the rate of increase of the population as $t \rightarrow \infty$. 1

<u>Question 2 (15 Marks)</u> (Start a new page)

- (a) A particle of unit mass is projected vertically upwards form the ground with initial speed u m/s. If air resistance at any time t seconds is proportional to the velocity at that instant, and assuming air resistance is -kv,
 - (i) Prove that if the highest point is reached by the particle in time *T* seconds then 4

$$kT = \log\left(1 + \frac{ku}{g}\right)$$

where *g* is the acceleration due to gravity.

(ii) If the highest point reached is at a height *h* metres above the ground, prove that hk = u - gT. 5

Question 2 continues on the next page

1

4

1

Question 2 continued

(b) The normal at a variable point
$$P\left(2p,\frac{2}{p}\right)$$
 on $xy = 4$, given by $y = p^2x - 2p^3 + \frac{2}{p}$,
meets the $x = axis$ at Q

meets the x – axis at Q.

- 1 (i) Find the coordinates of Q. (ii) Find the coordinates of the midpoint, M, of PQ. 2 3
 - (iii) Hence, find the locus of M.

Question 3 (15 Marks)

(a)	(i)	Prove that the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab square units.	3
	(ii)	Hence, by the method of cylindrical shells , find the volume of the solid formed when the area is rotated through 1 complete revolution about the line $y = b$.	3
(b)	The horiz	area enclosed by the graph of the function $y = e^{2x}$, the y – axis and the zontal line $y = e^2$ is rotated about the y – axis.	
	(i)	Show that the volume is given by $\Delta V = \sum_{0}^{1} 2\pi x (e^2 - e^{2x}) \Delta x$.	2
	(ii)	Hence, find the exact volume of the solid of revolution formed.	3

If the gradients of the tangents drawn to the curves $xy = c^2$ and $y^2 = 4ax$ at the (c) 4 point of intersection are *m* and *M* respectively. Prove that m = -2M.

Question 4 (15 Marks) (Start a new page)

- (c) A particle moves in a straight line so that it's acceleration is inversely proportional to the square of its distance from a point O in the line and is directed towards O. It starts from rest at a distance *a* units from *O*.
 - What is its velocity when it first reaches a distance, $\frac{a}{2}$ units, from *O*? (i) 3
 - Show that the time taken to first reach this distance in part (i) is given by (ii) 3

$$t = \frac{(\pi + 2)a^{\frac{3}{2}}}{4\sqrt{2k}}$$
, where k is a constant,

given that
$$\frac{d}{dx}\left[\sqrt{x(a-x)} + \frac{a}{2}\sin^{-1}\left(\frac{a-2x}{a}\right)\right] = -\sqrt{\frac{x}{a-x}}$$

Question 4 is on the next page.

Marks

Question 4 continued

- (b) *A* is the area of the region *R* bounded by the upper branch of the hyperbola $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$, the *x* axis and the lines $x = \pm a$.
 - (i) Show that $A = \frac{Lb}{2} \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right]$ square units, where *L* the length of the **5** base of *R* is 2*a* units.
 - (ii) S is the solid whose base is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Cross sections

perpendicular to the base and to the minor axis, are plane figures similar to region R where the line of intersection of the planes is the base length of R. Find the volume of S.

~ END OF TEST ~

4

2006 JRAHS Extension 2 Term 2 Assessment / LK

Solutions to Questions	Marking Scheme	Comments
Question 1		
(a) y y z z z z z z z z	 Foci (± 4, ± 4) → 1 mk Vertices (± 2√2,±2√2) → 1 mk Eqn. of directrices x + y = ± 4 → 1mk Shape of graph → 1mk 	Students must clearly show the coordinates of the foci and vertices & eqn. of directrices to obtain full marks. ¹ / ₂ mark off is scale is wrong/ no scale given. Variation to integral can
(b) (i) $\frac{dt}{dt} = \frac{1}{3}(3g - 2v)$ $\therefore \int_{0}^{v} \frac{dv}{3g - 2v} = \frac{1}{3}\int_{0}^{t} dt$	Correct integral → 1 mk	be: $t = \int \frac{3dv}{3g - 2v}$
$\therefore -\frac{1}{2}\ln 3g - 2v _{0}^{v} = \frac{1}{3}[t]_{0}^{t}$ $\therefore -\frac{1}{2}\ln\left \frac{3g - 2v}{3g}\right = \frac{1}{3}t \text{or} \frac{1}{2}\ln\left \frac{2v - 3g}{3g}\right = \frac{1}{3}t$	Correct integration $\rightarrow \frac{1}{2}$ mk Substitution & simplify $\rightarrow \frac{1}{2}$ mk	When $t = 0$, $v = 0$ $\Rightarrow c = -\frac{3}{2}\ln(3g)$
$\therefore \ln \left \frac{3g - 2v}{3g} \right = -\frac{2}{3}t$ $\therefore \frac{3g - 2v}{3g} = e^{-\frac{2t}{3}}$ $\therefore v = \frac{3g}{2} \left(1 - e^{-\frac{2t}{3}} \right)$	Taking <i>e</i> to both sides → 1 mk	

1 (b) (ii) as $t \to \infty$ $v \to \frac{3g}{2}$	Correct answer → 1 mk
1 (b) (iii) when $v = \frac{g}{2}$	
$\therefore \frac{1}{3} = 1 - e^{-\frac{2t}{3}}$	Correct substitution & simplification → 1 mk
$\therefore -\frac{2}{3}t = \ln\left(\frac{2}{3}\right)$ $\therefore t = -\frac{3}{3}\ln\left(\frac{2}{3}\right) \text{or } t = \frac{3(\ln 3 - \ln 2)}{2}$	Taking logs of both sides & simplification $\rightarrow 1$ mk
$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	
1 (c) (i) $P = \frac{g c}{C + e^{-kQt}}$	
$\therefore \frac{dP(t)}{dt} = \frac{Q^2 C k e^{-kQt}}{\left(C + e^{-kQt}\right)^2}$	Correct differential → 1 mk
$= \frac{kQC}{C + e^{-kQt}} \times \frac{Qe^{-kQt}}{C + e^{-kQt}}$	Simplification $\rightarrow 1 \text{ mk}$
= kP(Q-P) As $(Q-P) = Q - \frac{QC}{C + e^{-kQt}}$	
$= \frac{QC + Qe^{-kQt} - QC}{C + e^{-kQt}}$	
$=\frac{Qe^{-kQt}}{C+e^{-kQt}}$	Showing $(Q - P) = \frac{Qe^{-kQt}}{C + e^{-kQt}} \rightarrow 1 \text{ mk}$
1 (c) (ii) as $t \to \infty$, $P \to Q$ as $e^{-kQt} \to 0$	Correct answer with some explaination $\rightarrow 1$ mk
1 (c) (iii) as $t \to \infty$, $\frac{dP(t)}{dt} \to 0$ as $P \to Q$	Correct answer with some explaination $\rightarrow 1$ mk

Question 2		
(a) (i) $m\ddot{x} = m(-g) - mkv$ (upwards)	Correct equation → 1 mk	
$\therefore \ddot{x} = -g - kv \text{ i.e. } \frac{dv}{dt} = -g - kv$		
$\therefore \frac{1}{k} \int_{u}^{0} \frac{k dv}{-(g+kv)} = \int_{0}^{T} dt$	Correct integral → 1 mk	
$\therefore -\frac{1}{k} \left[\ln \left g + kv \right \right]_{u}^{0} = T$	Correct integration \rightarrow 1 mk	
$\therefore -\ln\left \frac{g}{g+ku}\right = kT$		
$\therefore \ln \left \frac{g + ku}{g} \right = kT \Rightarrow kT = \ln \left 1 + \frac{ku}{g} \right $	Correct simplification → 1 mk	
2 (a) (ii) Highest point reached is when $v = 0$		
$\therefore \frac{d}{dx}\left(\frac{1}{2}v^2\right) = -g - kv \Rightarrow v\frac{dv}{dx} = -g - kv$	$v \frac{dv}{dh} = -g - kv \rightarrow 1 \text{ mk}$	
$\therefore -\int_{u}^{0} \frac{v dv}{g + kv} = \int_{0}^{h} dx$	Correct integral → 1 mk	
$\therefore -\int_{u}^{0} \frac{1}{k} - \frac{g dv}{k(g+kv)} = \int_{0}^{h} dx$	$\frac{vdv}{g+kv} = \frac{1}{k} - \frac{gdv}{k(g+kv)} \Rightarrow 1 \text{ mk}$	
$\therefore -\int_{u}^{0} 1 - \frac{g dv}{(g + kv)} = kh$		
$\therefore -\left[v - \frac{g}{k}\ln(g + kv)\right]_{u}^{0} = kh$	Correct integration → 1 mk	
$\therefore -\left[-u + \frac{g}{k}\ln\left(\frac{g + ku}{g}\right)\right] = hk$	Correct simplification & connecting answer	
$\therefore hk = u - gT$ as $kT = \ln \left 1 + \frac{ku}{g} \right $ from part(i)	from (i) → 1 mk	

2 (b)	xy = 4		
	Eqn. of normal is $y = p^2 x - 2p^3 + \frac{2}{p}$		
(i)	\therefore coordinates of Q are $\left(2p - \frac{2}{p^3}, 0\right)$	Correct coordinates → 1 mk	
(ii)	$M = \left[\left(\frac{2p + 2p - \frac{2}{p^3}}{2} \right), \left(\frac{2}{p} \right) \right]$	Correct midpoint formula → 1 mk	Alternatively can award 1 mk each for <i>x</i> and <i>y</i> coordinate of midpoint.
	$M = \left[\left(2p - \frac{1}{p^3} \right), \frac{1}{p} \right]; p \neq 0$	Correct simplification & restriction for $p \rightarrow 1 \text{ mk}$	
(iii)	$x = 2p - \frac{1}{p^3}; y = \frac{1}{p}$	→ 1 mk	
	$\therefore p = \frac{1}{y} ; y \neq 0$		
	$\therefore x = \frac{2}{y} - y^3 \text{ is the locus of } M \text{ ; } y \neq 0$	→ 1 mk equation → 1 mk restriction $y \neq 0$	
Quest	ion 3		
(a) (i)	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \implies y = \frac{b}{a}\sqrt{a^{2} - x^{2}}$		
	$\therefore \text{ Area} = \frac{4b}{a} \int_{0}^{a} \sqrt{a^2 - x^2} dx$	→ 1 mk	
	$= \frac{4b}{a} \times \frac{1}{4} \pi a^2 \text{since } \int_0^a \sqrt{a^2 - x^2} dx \text{ is a}$ quadrant of a circle, centre O radius <i>a</i> units. \therefore Area = πab sq. units.	For $\frac{1}{4}\pi a^2 \rightarrow 1$ mk $\rightarrow 1$ mk explanation of using $\frac{1}{4}\pi a^2$	

3 (c)	Substituting $v^2 = 4ax$ into $xv = c^2$ we get		
0 (0)			
	$y^{3} = 4ac^{2} = 2a^{3}$ as $2c^{2} = a^{2}$.		
	Let <i>P</i> be the point of intersection where		
	$- \alpha(3/\Lambda)$	\rightarrow 1mk	
	: $v = \frac{a^3}{2}$ and $r = \frac{a(\sqrt{4})}{2}$		
	$y = u\sqrt{2}$ and $x = \frac{1}{\sqrt{2}}$		
	4		
	a dv v		
	By differentiating $rv = c^2$ we get $\frac{wy}{w} = -\frac{y}{w}$	$\rightarrow \frac{1}{2}$ mk	
	dr r		
	\therefore the gradient of the hyperbola $xy = c^2$ at P is		
	$-\alpha(3/2) - 4$	→ 1 mk	
	$m = \frac{a(\sqrt{2})}{2} = \frac{1}{2} \rightarrow A $		
	$(a)(a-) = \frac{3}{2}/2$		
	$ \frac{2}{3}/4 $ $\sqrt{2}$		
	$(\Delta)^{(*)}$		
	(+)		
1	dy 2a		
	By differentiating $v^2 = 4ar$ we get $\frac{dy}{dr} - \frac{2a}{dr}$	\rightarrow $\frac{1}{2}$ mk	
	By uniformitating $y + ux$ we get $-\frac{1}{dx}$		
	ux y		
	\cdot gradient of $v^2 = 4ar$ is given by		
	\therefore gradient of $y = -4ax$ is given by		
	$2a$ 2 \Box	→ 1 mk	
	$M = -\frac{\pi}{1 + 1} = -\frac{\pi}{1 + 1} \rightarrow B$		
	$a(\frac{3}{2}) = \frac{3}{2}$		
1			
1	$\cdot \Delta - B \rightarrow m = -2M$ as required		
	\dots Π \square		

4(a) (i) $\ddot{x} = -\frac{k}{r^2}$		
$\therefore \frac{d}{dx} \left(\frac{1}{2}v^2\right) = -\frac{k}{x^2}$		
$\therefore \frac{1}{2}v^2 = -\int \frac{k}{x^2} dx = \frac{k}{x} + c$	$\rightarrow \frac{1}{2} \text{ mk}$	
Now $v = 0$ when $x = a$ \therefore $c = -\frac{k}{x}$		
$\therefore v^2 = 2k \left(\frac{1}{x} - \frac{1}{a}\right)$	→ ½ mk	
Now $0 < x < a$ but motion is moving towards the origin for $t > 0$.		
$\therefore v = -\sqrt{2k\left(\frac{1}{x} - \frac{1}{a}\right)}$	→ 1 mk	
For $x = \frac{1}{2} a$, $v = -\sqrt{\frac{2k}{a}}$	Correct answer→ 1 mk	
4 (a) (ii) $\therefore \frac{1}{v} = \frac{dt}{dx} = -\frac{1}{\sqrt{2k\left(\frac{a-x}{ax}\right)}} = -\frac{1}{\sqrt{\frac{2k}{a}\left(\frac{a-x}{x}\right)}}$	Correct $\frac{1}{v}$ equation \rightarrow 1 mk	
$= -\sqrt{\frac{a}{2k}} \cdot \sqrt{\frac{x}{a-x}} \qquad = \sqrt{\frac{a}{2k}} \cdot \int_{\frac{a}{2}}^{a} \sqrt{\frac{x}{a-x}}$	$\sqrt{\frac{a}{2k}} \cdot \int_{\frac{a}{2}}^{a} \sqrt{\frac{x}{a-x}} \rightarrow 1 \text{ mk}$	
$= -\sqrt{\frac{a}{2k}} \left[\sqrt{x(a-x)} + \frac{1}{2}a\sin^{-1}\left(\frac{a-2x}{a}\right) \right]_{\frac{a}{2}}^{a}$	Correct substitution $\rightarrow 1$ mk	
$= -\sqrt{\frac{a}{2k}} \left[\frac{1}{2} a \sin^{-1}(-1) - \frac{a}{2} - \frac{1}{2} a \sin(0) \right]$		
$\therefore t = \frac{\left(\pi + 2\right)a^{\frac{3}{2}}}{4\sqrt{2k}}$		

4 (b) (i) Continued		
Now $I = \int \sec\theta (\sec^2\theta) d\theta = \int \sec\theta (1 + \tan^2\theta) d\theta$	\rightarrow 1 mk	
$\therefore \qquad I = \int \sec\theta d\theta + \int (\sec\theta \tan\theta) \tan\theta d\theta$		
$= \int \frac{\sec \theta (\sec \theta + \tan \theta)}{\sec \theta + \tan \theta} d\theta + \int \tan \theta \cdot \frac{d}{d\theta} (\sec \theta) d\theta$ $= \ln (\sec \theta + \tan \theta) + \tan \theta \sec \theta - I$ $\therefore I = \frac{1}{2} \ln (\sec \theta + \tan \theta) + \frac{1}{2} \tan \theta \sec \theta$	→ 1mk	
So Area = $ab[\ln(\sec\theta + \tan\theta) + \tan\theta\sec\theta]_0^{\frac{\pi}{4}}$	→ 1mk	
$= ab \left[\sqrt{2} + \ln \left(1 + \sqrt{2} \right) \right]$		
Since $L = 2a$ area generated is $A = \frac{Lb}{2} \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right]$ unit ²		
4 (b) (ii)		
$\frac{x^{2}}{x^{2}} + \frac{y^{2}}{x^{2}} = 1$		
Consider the cross section at $P(x, y)$ on the ellipse of thickness Δy (See diagram). The area of this cross section from (i) is A square units.		

Note $L = 2a = 2x$ so $a = x$.		
$\therefore \text{ Area} = A = xb \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right]$		
But $x = \frac{a}{b}\sqrt{b^2 - y^2}$ and let $K = \left[\sqrt{2} + \ln(1 + \sqrt{2})\right]$		
$\therefore A(y) = \frac{LK}{2}\sqrt{b^2 - y^2}$	$A(y) \rightarrow 1 \text{ mk}$	
Now volume of slice, $\Delta V = A(y) \Delta y$		
$\therefore \Delta V = \frac{LK}{2} \sqrt{b^2 - y^2} \Delta y$		
\therefore volume of sum of slices,		
$V = \frac{LK}{2} \lim_{\Delta y \to 0} \sum_{-b}^{b} \sqrt{b^2 - y^2} \Delta y$	→ 1 mk	
$=\frac{LK}{2}\int_{-b}^{b}\sqrt{b^2-y^2}dy$		
$=\frac{LK}{2}\cdot\frac{1}{2}\pi b^2$	→ 1 mk	
(Note: this integral gives area of semi circle radius <i>b</i>)		
$\therefore \text{ Volume of } S = \frac{\pi L b^2}{4} \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right] \text{ in terms of } L \text{ and } b$	→ 1mk	
or $= \frac{\pi a b^2}{2} \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right]$ in terms of <i>a</i> and <i>b</i> .		

~ End of Test ~